

THE UNIVERSITY OF CALGARY

Programming Distributed Collaboration Interaction Through the World Wide Web

by

Roberto Augusto Flores-Méndez

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

JUNE, 1997

 Roberto Augusto Flores-Méndez 1997

ii

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled “Programming Distributed Collaboration Interaction

Through the World Wide Web” submitted by Roberto Augusto Flores-Méndez in partial

fulfillment of the requirements for the degree of Master of Science.

__

Supervisor, Brian Gaines, Department of Computer Science

__

Ken Loose, Department of Computer Science

__

Robert Kremer, Department of Computer Science

__

Steve Norman, Department of Electrical Engineering

Date

iii

ABSTRACT

This Thesis presents the implementation of a client/server concept mapping tool as a support

for asynchronous workgroup knowledge sharing on the Internet and the World Wide Web.

This tool is composed of a server process, named jKSImapper Server, and two client systems:

jKSImapper and jKSImapplet, which allow concept mapping elicitation on the Internet and

the World Wide Web, respectively. These systems were developed based on the jCMap class

library, which is an object-oriented library implemented using the Java programming

language. This class library was designed as a framework for the development of systems

supporting abstract visual representations while allowing extensibility to support formal

knowledge constraints. This Thesis also includes an overview of the issues required for

downloadable code; a description of the characteristics of the Java programming language;

and the lessons learned when constructing jCMap based on previously existing C++ code.

iv

ACKNOWLEDGEMENTS

The work presented in this Thesis could not have been possible without the guidance and

support of many people. In first place, I would like to thank my supervisor, Dr. Brian R.

Gaines, for giving me the opportunity of pursue this work and directing my efforts to

complete it. He has been an invaluable source of support and guidance all through my

graduate program.

I would also like to thank Rob Kremer for the lengthy discussions we had that helped me to

cope with the intricacy of object-oriented abstractions. Likewise, I would like to thank Dr.

Mildred Shaw, Dr. Saul Greenberg, Dr. Dickson Lukose, Lee Chen, Mark Roseman, Carl

Gutwin, Gladimir Baranoski, Jalal Kawash, and Pim van Leewen for their timely input and

advice. A special mention goes to the people at the Computer Science Department (students,

faculty and staff) for their unconditional support and friendship.

Many thanks to Dr. Jorge Carpizo and Wilhelm Pérez, who gave me the opportunity to enter

graduate school in the first place. Thanks to José Alvarez Jr. for his invaluable job of proof-

reading this Thesis.

At last, but not at least, I would like to thank my wife Cecilia and child Ricardo for being a

source of motivation and encouragement. Thanks to my parents, Augusto and Ligia, for

teaching me that I could accomplish anything I set out to do.

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT).

v

To my wife, Cecilia.

To Dr. Herman W. Konrad

In Memoriam

vi

Table Of Contents

Approval Page ... ii

Abstract .. iii

Acknowledgments .. iv

Dedications.. v

Table of Contents ... vi

List of Tables... x

List of Figures .. xi

Chapter 1 Introduction.. 1

1.1 Aim... 1

1.2 Motivation.. 1

1.3 Concept Maps. ... 2

1.3.1 Applications. .. 3

1.4 Client-Server Computing. .. 4

1.4.1 The Internet. ... 4

1.4.2 The World Wide Web... 5

1.4.3 Executable Code on the World Wide Web.. 7

1.4.3.1 Common Gateway Interface. ... 8

1.4.3.2 Helpers and Plug-ins.. 10

1.4.3.3 Downloadable Code... 10

1.4.4 The Java Programming Language.. 11

1.5 Research Objectives. .. 12

1.6 Thesis Overview. ... 13

Chapter 2 Downloadable Code on the World Wide Web .. 14

2.1 Issues for Downloadable Code... 16

2.1.1 Portability... 17

vii

2.1.2 Security. ... 17

2.1.3 Functionality. ... 18

2.2 Integration of Downloadable Code to the World Wide Web............................... 19

2.2.1 ActiveX. ... 20

2.2.1.1 Portability. ... 20

2.2.1.2 Security. ... 22

2.2.1.3 Functionality. ... 24

2.2.2 Java. ... 25

2.2.2.1 Portability. ... 25

2.2.2.2 Security. ... 25

2.2.2.2.1 The Language and Compiler. .. 26

2.2.2.2.2 The Class Loader. .. 27

2.2.2.2.3 The Bytecode Verifier. .. 27

2.2.2.2.4 Security Manager... 28

2.2.2.3 Functionality. ... 30

2.3 Chapter Summary... 32

Chapter 3 The Java Programming Language ... 33

3.1 Overview. ... 34

3.1.1 Object-Oriented.. 34

3.1.2 Distributed. .. 36

3.1.3 Portable. ... 36

3.1.4 Secure... 38

3.1.5 Multi-threaded. .. 39

3.2 Programming for the Internet and the World Wide Web..................................... 39

3.2.1 Integration with Netscape Navigator. .. 40

3.2.2 Internet Networking. .. 41

3.3 Language comparison between Java and C++. .. 43

3.4 Chapter Summary... 48

Chapter 4 Implementing a Java Concept Mapping Tool.. 49

4.1 Previous Work.. 49

viii

4.2 System Requirements... 55

4.2.1 Development Framework... 55

4.2.2 Supporting Multi-User Environments. .. 58

4.3 jKSImapper. ... 59

4.3.1 The Windows Manager.. 60

4.3.2 The Concept Map Window.. 62

4.4 jKSImapplet. .. 70

4.4.1 jKSImapplet Navigator. ... 72

4.5 Chapter Summary... 74

Chapter 5 System Architecture... 76

5.1 The jCMap Class Library. .. 76

5.1.1 The Behavioural Graphic Classes. ... 78

5.1.2 The Visual Graphic Classes. .. 81

5.1.3 The User Interface Classes... 83

5.1.4 The Command Handling Classes... 86

5.1.5 The Networking and Server Classes. ... 89

5.1.6 The File Storage Classes. ... 90

5.2 Runtime System Architecture. ... 91

5.2.1 Client Systems. .. 91

5.2.1.1 jKSImapper.. 93

5.2.1.1.1 Execution Structure. .. 93

5.2.1.1.2 Concept Mapping Structure... 94

5.2.1.2 jKSImapplet. .. 95

5.2.1.2.1 Execution Structure. .. 95

5.2.1.2.2 Concept Mapping Structure... 97

5.2.2 Server Process.. 98

5.2.3 MIME File Format. .. 103

5.3 Porting C++ Code to Java: Lessons Learned ... 107

5.3.1 Automatic Memory Management. ... 107

5.3.2 Portability and Graphical User Interfaces. ... 109

ix

5.3.3 Class Inheritance and Interfaces... 111

5.3.4 Generic Programming. ... 112

5.3.5 Parameter-Passing.. 113

5.3.6 Multi-Threading... 113

5.3.7 World Wide Web Integration... 114

5.4 Chapter Summary... 115

Chapter 6 Evaluation and Future Development ... 117

6.1 Evaluation. ... 117

6.1.1 Requirements. .. 117

6.1.2 Background. ... 118

6.1.3 Current Work in the Field. ... 118

6.1.4 Implementation. ... 119

6.1.5 Demonstration.. 119

6.1.6 Future Work. .. 120

6.2 Areas of Future Development. ... 121

6.2.1 Extending Functionality... 121

6.2.1.1 Conceptual Graphs... 122

6.2.1.2 The Habanero Environment... 124

6.2.2 Improving Functionality. ... 124

6.2.2.1 Human-Computer Interface. .. 125

6.2.2.2 Multi-user Issues.. 128

6.2.2.3 Miscellaneous Improvements. ... 129

6.3 Thesis Summary and Conclusion... 130

References ... 133

x

List of Tables

Table 1. Scenarios for Executable Code on the Web. ... 8

Table 2. Access parameter compliance of prevalent Java interpreters.............................. 29

Table 3. Java Primitive Data Types... 37

Table 4. Interaction modes of CSCW systems.. 58

Table 5. Operations performed in Concept Map Windows... 63

Table 6. Command values defined on the Command class... 87

xi

List of Figures

Figure 1. Concept Map on the Java Language. ... 2

Figure 2. Models for Software distribution. .. 16

Figure 3. Java Security Model... 26

Figure 4. Component classes from the Abstract Window Toolkit library. 37

Figure 5. Code example for a Java method invocation from JavaScript........................... 40

Figure 6. Code Example for a JavaScript method invocation from Java. 41

Figure 7. Code example on initialization of strings and arrays. .. 46

Figure 8. Concept Mapping Development at the Knowledge Science Institute................ 50

Figure 9. jKSImapper components.. 60

Figure 10. The Windows Manager.. 61

Figure 11. A formal concept map describing the sentence "Tom believes that Mary
wants to marry a sailor." .. 62

Figure 12. Available Shapes for Nodes... 64

Figure 13. Available Links. ... 64

Figure 14. Example of a Context Box... 65

Figure 15. jKSImapper selection example. ... 66

Figure 16. Arrow head configurations exemplified on trinary links. 69

Figure 17. HTML widgets interacting with jKSImapplet through JavaScript. 72

Figure 18. jKSImapplet Navigator. ... 73

Figure 19. The jCMap class hierarchy .. 77

Figure 20. The Behavioural Graphic class hierarchy. ... 79

Figure 21. The Visual Graphic class hierarchy. .. 81

Figure 22. The User Interface class hierarchy. .. 83

Figure 23. Runtime Composition of a jKSImapperWindow object. 85

Figure 24. The Command Handling class hierarchy. .. 86

Figure 25. The Networking and Server class hierarchy. ... 89

Figure 26. The File Storage class hierarchy. ... 91

Figure 27. Groupware Concept Mapping Collaboration using jKSImapper and
jKSImapplet. .. 92

xii

Figure 28. Sample invocation of jKSImapper on a Command Line. 93

Figure 29. jKSImapper Execution Structure diagram. .. 94

Figure 30. jKSImapper Concept Mapping Structure diagram... 94

Figure 31. Sample invocation of jKSImapplet declared inside an HTML document. 96

Figure 32. jKSImapplet Execution Structure diagram. ... 96

Figure 33. jKSImapplet Concept Mapping Structure diagram.. 97

Figure 34. jKSImapper Server Structure diagram. .. 99

Figure 35. Conceptual Graph describing the sentence “No student read the book the
teacher wrote”. ... 104

Figure 36. Data representing the concept map displayed on Figure 35........................... 104

Figure 37. Backus-Naur Form notation for the jKSImapper MIME file format. 106

Figure 38. Java variable states... 109

Figure 39. Example of a Conceptual Graph as a Diagram. ... 122

Figure 40. Example of a Conceptual Graph in Linear Form... 123

Figure 41. Example of a Conceptual Graph as a First-order logical formula. 123

Figure 42. Font style modification using menu commands. ... 125

Figure 43. jKSImapper Toolbar. ... 126

1

CHAPTER 1

INTRODUCTION

1.1 AIM.

The purpose of this research is to evaluate Java as a suitable programming language for

the Internet by using it to implement a concept mapping tool system able to support

distributed user environments on the Internet and the World Wide Web.

1.2 MOTIVATION.

All over the globe, individuals face constant and pervasive changes that make it

impossible, not just to transcend, but to survive under timely immutable states of

knowledge. The challenge is overt: involvement in continuous education is indispensable

to overcome such changes.

The learning web, which was first described by Norrie and Gaines (Norrie and Gaines,

1995), is envisioned as part of a learning society where individuals are submerged in a

life-long process of acquiring knowledge to cope with evolving environments. Individuals

will no longer succeed in isolation or with a fixed amount of knowledge, but rather they

will operate as part of collaborative workgroups, where digital computers and networks

will be used for communication and collaboration (Shaw and Gaines, 1996). In other

words, computer networks will be used to communicate the experiences and knowledge

acquired by each of the users on a distributed virtual community to all the members of the

community.

Under this scheme, the present thesis will show the implementation of a concept mapping

tool as a support for workgroup knowledge sharing on distributed environments. In this

2

implementation, the World Wide Web (the Web) is used as the hypermedia infrastructure

and the Java programming language as a solution to provide portable executable code

among the diversity of computer operating systems found on the Internet.

1.3 CONCEPT MAPS.

One of the mechanisms used to organize and communicate knowledge among individuals

are concept maps (Gaines and Shaw, 1995a). The term concept map, which encompasses

a wide variety of diagrammatic knowledge representations, can be defined as diagrams

composed of links and nodes of different types. Concept maps can be used to graphically

represent and organize arguments and thoughts, providing an alternative to natural

languages to communicate knowledge.

Figure 1. Concept Map on the Java Language.

3

Figure 1 shows a concept map, which illustrates features found in the Java programming

language. In this concept map, circular nodes represent concepts, rectangular nodes

represent instances, and labeled arrows represent relationships.

1.3.1 APPLICATIONS.

Concept maps have been applied on areas ranging from education (Novak and Gowin,

1984) and management (Axelrod, 1976) to artificial intelligence (Quillian, 1968) and

knowledge acquisition (McNeese, Zaff, Peio, Snyder, Duncan, and McFarren, 1990).

Even when some of the applicable disciplines may implement formalisms to interpret and

organize relevant information, the test case implementation for this research does not

enforce particular constraints. This makes the concept mapping tool applicable as the

basis to support diverse formalism domains. In such cases, the concept mapping

application can be extended to fulfill specific requirements.

Some scenarios where the test case implementation may be used as a groupware tool are:

• Brainstorming: where known concepts and relationships are suggested by individuals

to conform a meaningful workgroup knowledge structure.

• Decision making: where current variables are identified on existing knowledge

structures leading to logical inferences that, ultimately, will help for decision making.

• Information navigation: as a hypermedia organizer; where information can be

encapsulated on different levels of abstraction for easy comprehension, while allowing

expansion to reveal details when required.

• Presentation planning: as a tool to outline presentations’ content in a non-linear

manner. This technique allows a quick interpretation of related material and their

relationship with the subject of the presentation.

4

1.4 CLIENT-SERVER COMPUTING.

Since their invention, computer systems have been in constant evolution. During the

decade of the 1970’s, most computer sites were composed of mainframe systems

accessed by dumb terminals. Under this scenario, all data storage and computational

power were provided by centralized computers. It was common then to interconnect these

mainframes, creating large-scale distributed systems over computer networks.

In the 1980’s, personal computers and local area networks attained wide popularity. This

circumstance allowed their fast integration to the existing mainframe-based distributed

systems. This new arrangement radically modified the centralized infrastructure for

computation and data storage, allowing some balance on the execution of code between

mainframes and personal computers.

Mainly because of their reliability, mainframes became the providers of services for the

increasing number of satellite desktop computers, from where the term client-server is

derived. Formally defined, client-server computing is a computer architecture based on

client systems (systems requesting services) communicating over networks with server

systems (systems providing services). This architecture constitutes the foundation of the

client-server systems. Such programs divide their functionality by using code, located on

both client and server computers.

1.4.1 THE INTERNET.

The Internet can be defined as a large interconnection of regional networks that

communicate with each other using the TCP/IP protocol.

The Internet is essentially a communication infrastructure consisting of 4 elements:

• Network Computers: forming the physical platform to process, store and transfer data;

• Users: who are the providers and requesters of information;

• Services: protocols and standards used to organize, access and transmit information; and

5

• Information: which is formatted data with meaningful content.

The Internet started in 1969 as a project developed by the United States Department of

Defense. Since then, the Internet has grown from connecting 6 computers on its starting

year to more than 6 million computers on 1995. Due to its number of users and the

amount of information and services provided, the Internet is considered the most

sophisticated client-server computer architecture available. One of the factors that has

fostered its wide acceptance has been the implementation of mechanisms to integrate

dissimilar operating systems into a common communication environment. Such

environment has been found to be suitable for the transmission of knowledge supplied by

multiple sources, regarding multiple areas of expertise (Berners-Lee, Cailliau, Frystyk,

Secret, 1994).

The Internet incorporates several mechanisms that support distributed and collaborative

communities of users and provides access to diverse information resources and services.

From the available services, the Web has become the primary standard for information

retrieval and exchange, surpassing leading services such as FTP on the volume of

information handled (Gaines, Shaw and Chen, 1996).

1.4.2 THE WORLD WIDE WEB.

Since its implementation in 1989, the Web has performed as a stateless client-server

retrieval-information service for the Internet. It provides conventions that encompass

virtually all Internet services, allowing members to access information on a hypermedia

environment using a constant interface.

The Web is composed of several essential concepts, which are described as follows:

• Universal Resource Locator (URL): Universal Resource Locators are text strings used

to address resources. They are essential for the system to scale and for the information

space to be independent of the network and server topology. URL addresses have the

following structure (Berners-Lee, Masinter, and McCahill, 1994):

6

<scheme> : <scheme-specific-part>

where scheme represents an Internet protocol (such as FTP, HTTP or GOPHER), and

scheme-specific-part specifies a string whose interpretation is dependent on the scheme

applied. For schemes that use IP-based protocols, the scheme-specific-part will be

compliant with the following syntax:

// [<user> [: <password>] @] <host> [: <port>] / [<URL-path>]

where the double forward slash indicates that the string conforms with the Internet

syntax; <user>:<password> indicates optional values representing a user id and

password (if required by the service requested); host denotes a fully qualified domain

name of a network host; port indicates a port to request a connection (this argument is

optional on services that specify a default port to connect); and URL-path, which

specifies the details to access a specific resource on the host (e.g., path for locating a

file).

One of the advantages of the actual URL syntax is that it allows not just accommodation

to existing schemes, but also, to any other that might be developed in the future.

• Hypertext Transfer Protocol (HTTP): Rather than just a protocol to transfer hypertext,

HTTP is a protocol to transmit any information while providing the efficiency necessary

to make hyperlink jumps. Although comprehension of the Hypertext Markup Language

is required for Web clients, HTTP is used to retrieve documents in an extensive and

unbounded set of formats. To achieve this goal, the client sends a list of data formats

and the server replies with data in any of those formats it can produce (Berners-Lee,

Cailliau, Frystyk, Secret, 1994).

• Hypertext Markup Language (HTML): HTML is a simple markup language used to

create hypertext documents that are platform independent (Berners-Lee, Connolly,

1995). HTML is based on a set of instructions called tags, which are used to represent

attributes. Single tags represent atomic values (e.g., a line feed), and paired tags are used

to limit the attribute's range of influence (e.g., starting italic text formatting, ending

7

italic text formatting). HTML allows the creation of documents containing formatted

text and links to images, sound streams, video sequences, executable code, as well as

form fields and tables.

In a common scenario, a client using a Web browser (which performs as the hypermedia

interface), communicates with a server through the HTTP protocol to access resources

located on that server. These resources are usually HTML documents containing

formatted text and hyperlinks to other resources. Such resources may be located on the

host site or anywhere over the Internet.

In general, users accessing the Web perform as requesters of resources, which may be any

source of data specially formatted to reflect its content. Plain text, images, video, sound

and executable code are examples of formatted data. Among the data formats that can be

transmitted through the Web, executable code is the most powerful one and provides an

array of services to users not provided by other data formats.

1.4.3 EXECUTABLE CODE ON THE WORLD WIDE WEB.

As previously mentioned, executable code is the most powerful data format that can be

incorporated to the Web. Information handled on the Web can be classified, from the

users' perspective, either as dynamic or static, having interaction as the element to

differentiate them. Text, images, sound and movies are examples of static content. As it

can be derived, the presence of animation is not considered dynamic, since users can not

modify the outcome of such predefined information. On the other hand, executable code

does provide dynamic content. Executable code allows users to type instructions, select

options and make decisions to obtain results according to their needs.

The Web, as a service supported by a client-server environment, allows execution of code

both ways, on servers and client sites. The original location of the code and its place of

execution are variables that can be used to classify executable code. As shown in Table 1,

the variables generate four scenarios:

8

All the scenarios shown are currently supported by Web servers, with the sole exception

of mobile agents. Intelligent mobile agents are a very interesting and broad area of

computer science, however, they are out of the scope of the present work. Current

research on that domain promises to deliver concepts that may transform the way in

which humans interact with computers and society. Further information can be found on

(White, 1995) and (Harrison, Chess and Kershenbaum, 1995). Following sections

describe the development achieved on the remaining areas.

1.4.3.1 COMMON GATEWAY INTERFACE.

The Common Gateway Interface (CGI) is described as a standard to communicate

external applications with information servers (NCSA, 1996). On Web servers, CGI

programs (which are usually small applications called “servlets”) are executed based on

client request. Such requests are triggered either to obtain information located on the

server, or to submit information for storage and/or processing.

Usually, CGI programs are complemented by HTML forms. A form is essentially a

distinctive group of widgets, or user interface input elements (such as input lines, combo

boxes and buttons), included in an HTML document to query information from users.

Users interacting with forms can submit information to the server. The server will then

act as a gateway to invoke the corresponding CGI program, and to pass the received

information as a parameter. The CGI program will process the information and will send

back an acknowledgment to the client, usually in the form of another HTML document.

This scheme allows a recurrent process of interaction.

 Place of Execution

 Server Client
Location of Code Server CGI Downloadable Code

 Client Mobile Agents Helpers and Plug-ins

Table 1. Scenarios for Executable Code on the Web.

9

An interesting application to exemplify the practical use CGI and HTML forms is found

on WebGrid (Shaw and Gaines, 1995). WebGrid is a repertory grid system developed in

the Knowledge Science Institute at the University of Calgary. In WebGrid, user data

represents information relevant to the state of an elicitation of constructs. That

information is submitted to the server for processing. Afterwards, the server will reply

with an evaluation of such information (e.g., a graphical model from one of the clustering

techniques available), or with a new form to continue the elicitation process. WebGrid

implements an elegant solution to overcome limitations on the stateless nature of the

Web, by storing user information on hidden fields inside HTML documents. This

approach has the dual benefit of eliminating the need for the server to store user

information (since the client can save HTML documents for later use), and to maintain

the state for each elicitation (but at the cost of recalculating all the information for each

user request).

Without a doubt, the introduction of CGI and HTML forms represent a big step towards

the integration of dynamic content to the Web. Unfortunately, it also introduced some

drawbacks, such as:

∗ Increased server workload: The server is penalized by supporting all the processing

needed to execute a CGI application. This problem can be increased by the fact that

different instances are started each time a CGI program is requested. This circumstance

forces the server to have multiple identical processes carrying on the same task at the

same time.

∗ Limited user interaction: In most cases, users are limited to manipulate HTML forms.

This approach might be suitable for simple database applications, but not for systems

requiring immediate response over users' events.

These limitations have lead to the search of alternative techniques to improve client

interaction while decreasing server workload. As described below, an alternative solution

is achieved by sharing some of the processing workload with client computers.

10

1.4.3.2 HELPERS AND PLUG-INS.

Helper and Plug-in applications are part of an evolution process for handling and

embedding proprietary information into Web browsers. They share a basic functionality,

since both types represent client-resident programs designed to manipulate information

that browsers are not programmed to handle. However, they differ on the degree of

integration achieved with Web browsers. While helper applications are executed as

browser-external programs, plug-ins can be designed to gain access to the display area

inside the browser. Under these circumstances, browsers will act as mere gateways that

communicate data to and from server computers. This technique has been successfully

used to provide a smooth integration of third-party applications into the Web.

Unfortunately, helpers and plug-ins also have drawbacks. Problems related to such

systems include their computer-platform dependency and the need of explicit installation.

On typical scenarios, users will need to obtain, install and register specific helper or plug-

in applications in accordance to the operating system in use. In practice, this approach

will pose an added burden that may discourage the somewhat casual exploration that has

given popularity to the Web.

1.4.3.3 DOWNLOADABLE CODE.

Downloadable code is a recent development. The idea behind this technique is to allow

client browsers to automatically download and execute small programs (frequently called

“applets”) that have been hyperlinked or embedded into HTML documents. This

mechanism simplifies the distribution and use of software, by allowing automatic

installation and configuration of applications.

In general, any executable code needs to be related to an HTML document for integration

to the Web. This integration is accomplished by using any of two methods: hyperlinking

or embedding. Hyperlinking consists on creating a hyperlink inside an HTML document

pointing to an external file containing executable code. In contrast, embedded code is

achieved by using scripting programs, which are commonly written using browser

11

proprietary scripting languages. These programs are then inserted as part of the content of

HTML documents. Examples of embeddable programming languages are JavaScript

(Netscape, 1996) and VBScript (Microsoft, 1996a).

However, the possibility of executing programs downloaded from external sources poses

security risks. For years, computer hackers have taken advantage of the weaknesses found

in programs and operating systems to spread malicious code without users' consent and

awareness. If security mechanisms were not implemented, automatic downloadable code

would allow even the most naive programmer to produce a highly devastating program.

This makes it essential to define parameters and rules to delimit the behavior of

downloadable programs without decreasing their ability to produce useful results. In other

words, security needs to be enforced to protect the integrity of users' resources without

reducing programs’ functionality.

Besides security and functionality, a third issue to address is portability, or the ability for

programs to be executed unmodified on different operating systems.

As it will be later detailed, portability, security and functionality play a significant role on

the reliability of different programming languages and environments that support

downloadable code on the Web. One of such languages, which is the subject of study in

this research, is the Java programming language. Interpreters for this language have been

included in major commercial browsers as a solution to support executable content on the

Web.

1.4.4 THE JAVA PROGRAMMING LANGUAGE.

Java was first developed in 1992 at Sun Microsystems as a programming language for

consumer electronics software (Naughton, 1996). As time passed, several attempts to

commercialize Java, back then called Oak, ended unsuccessfully. It was not until 1994,

after the Web took by storm the Internet, that it was realized Java has potential to provide

embeddable executable content on Web documents. At that point, Sun developed the

HotJava (Sun, 1996a) browser, which first allowed the execution of Java applets.

12

However, it was the support given by major commercial companies such Netscape, which

implemented Java as an integrated plug-in on its Navigator browser (Netscape, 1996b),

that boosted the acceptance of Java among Web users.

Java has characteristics that highly resemble features found in the C (Kernighan and

Ritchie, 1978), C++ (Stroustrup, 1991), and ObjectiveC (Cox, 1986) programming

languages. Java has been portrayed as an alternative to C++ to create safe, portable,

multi-threaded applications for distributed environments.

1.5 RESEARCH OBJECTIVES.

The objectives intended for the present research are:

1. To survey the requirements to develop programs on the Internet and the World Wide

Web, as well as the state of the art of programming languages that can be used to

implement such programs.

2. To analyze the features of Java as a programming language for the Internet and the

World Wide Web.

3. To analyze the implementation requirements for a concept mapping tool to operate on

the Internet and the World Wide Web based on previous developments at the

Knowledge Science Institute.

4. To design and develop a well-structured implementation of a Java concept mapping

tool based on an existing system constructed using the C++ programming language.

5. To compare the Java and C++ programming languages in the light of the

implementation experience.

6. To evaluate the Java concept mapping tool in a range of practical applications.

7. To propose further development and research based on the experience and evaluation

of the concept mapping tool implemented.

13

1.6 THESIS OVERVIEW.

This first chapter has been devoted to describe the relevance of the Web as a hypermedia

environment and the transcendence of executable content as part of such environment.

Chapter 2 will discuss current approaches that integrate executable code to the Web,

detailing important issues such as security, portability and functionality. Chapter 3 will

show Java in detail: motivations that brought it to life, a summary of its most relevant

features, and a description of its system architecture. The differences between Java and

C++ at the language level are also explored within this chapter. Chapter 4 introduces the

background required for the implementation of the Java concept mapping application.

This chapter presents previous work in that area and describes the operations available on

the Java concept mapping system when working as a standalone application or as an

applet. Such programs are called jKSImapper and jKSImapplet, respectively. Chapter 5

goes deeper in the implementation of these systems and explains the inner workings of

both programs, the class hierarchy used for their development, and their runtime system

architecture. An interesting addition to this chapter is the description of lessons learned

while porting the class hierarchy from C++ to Java. Chapter 6 is devoted to propose

further developments and research to improve these concept mapping systems. This

closing chapter includes the summary and conclusion for the present thesis.

14

CHAPTER 2

DOWNLOADABLE CODE ON THE WORLD WIDE WEB

The Internet was designed to integrate any computer platform implementing a set of

standard communication protocols, of which TCP/IP is the best known. Without a doubt,

the Internet has succeeded in supporting the exchange of data among diverse computer

and network architectures. The arrival of the Web marked the beginning of a new era of

data access. The Web integrates information into a distributed hypermedia environment

as a single consistent interface. In summary, while the Internet established the basis for

computer inter-communication, the Web set up the foundations for distributed data

integration.

On the Web, browsers are used to access hypermedia information available on the

Internet. In the case of downloadable programs, this simple model requires a major

feature: platform neutrality.

Platform neutrality addresses the need for relaxed computer constraints to access data.

This means that users on a platform neutral environment will be able to access

information regardless of the platform used. Additionally, such information will be

presented in a consistent format on all available computer platforms. For example, a user

on a Macintosh will be able to access information located on a Windows NT server, and

this information will be the same as if it was displayed on a PC or a Unix computer.

Platform neutrality encompasses multiple data formats, executable code being one of

them. Hence, platform neutrality also leads to the need for portable code. Software

distribution over the Web confronts problems different from those faced by traditional

distribution models, as explained as follows.

15

Under a traditional software distribution model, as shown on Figure 2, users freely

execute programs bought from software companies, obtained from retailers or

downloaded from the Internet. Fortunately, users are not naive about security risks, and

most of them exercise (sometimes without consciously noticing it) a selection process for

the software they want to use. For example, they may choose software that clearly

proclaims their origin, since they will probably trust a piece of software if it comes from a

company they are likely to trust; or they may use anti-virus protection programs when

dealing with software that may have been tampered with. Unfortunately, this process is

not adequate for the Web, since users may not be keen on verifying each program they

download for each document that is accessed while navigating the Web.

Proposed models for software distribution on the Web implement a different approach for

selectivity and protection. This approach is based on techniques such as digital signatures,

code verification and encryption, which are complementary and not mutually exclusive.

Digital signatures are used to identify the author of archives. This identification is used to

filter non-trusted sources, and to assign permission privileges according to the level of

trustability granted to the provider of the code.

Code verification algorithms can be used to verify that the downloaded code will perform

according to the privileges granted by the user.

Additionally, downloadable code can also be encrypted by the author and decrypted by

the client, giving the assurance that the code provided has not been modified since its

production. Algorithms based on private and public key encryption, such as the “Pretty

Good Privacy” (Zimmermann, 1995), can be a viable option in this area. Figure 2

illustrates how these techniques will enhance current models of software distribution, in

this case for the Java programming language (Shoffner and Hughes, 1996).

16

Figure 2. Models for Software distribution.

Even when secure programs can be delivered using these techniques, executable

programs still remain tied to the requirements of specific operating system

implementations. This limitation has fostered the need to develop approaches to integrate

portable and functional downloadable code as part of the World Wide Web.

2.1 ISSUES FOR DOWNLOADABLE CODE.

Portability, security and functionality play an important role on distributed systems. These

issues are described on detail on the following sections.

17

2.1.1 PORTABILITY.

Code portability is the characteristic of executing programs regardless of the computer

platform on which the code was implemented. Executable code can be produced using

diverse programming languages. However, portable executable code is a characteristic

that is not widely supported by most languages. According to the level of portability

supported, executable code falls into the following classes:

• Native Code: Native code, also known as platform-dependent code, is the result of

compiling source code directly to a set of optimized instructions targeted to a specific

operating system. This process results on highly efficient code that is virtually non-

portable to dissimilar platforms.

• Interpreted Code: Interpreted code comprises options that range from not performing

any compilation (using a scripting language) to compiling source code to a set of binary

instructions (known as intermediate code). Because interpreted code is represented in a

neutral form, an interpreter will be required at the client site to transform the incoming

code to native executable instructions.

Current techniques that support portability range from the ones providing interpreted code

that can be run on any platform implementing an interpreter, to the ones having native-

compiled versions of a program for each possible client operating system that might

request it.

2.1.2 SECURITY.

Topics on this area address the importance of protecting the integrity of user resources

and information available to executable code. Security mechanisms and policies will be

addressed under the following areas:

• Authentication: This area covers the need to define the identity of the code and its

origin. Mechanisms will be required to identify the supplier of the code and to guarantee

that the downloaded code truly comes from the specified supplier. Up to this point,

18

assumptions can just be made based on the trustworthiness of the originator of the code,

but not about the actions that the code might do upon execution.

• Authorization: During this stage, policies will be required to determine code’s

privileges to access resources on the client computer. Mechanisms might be used to

assert that the code instructions conform to the privileges granted to it. Such

mechanisms are relevant to infer code behaviour, but are often inadequate if used on

applications derived from programming languages supporting self modification of code

at runtime.

• Data Integrity: Protecting the quality and state of information maintained by the user is

one of the most sensitive areas to address. Under this topic, policies and mechanisms are

implemented to guarantee that existent information will not be altered by any means or

disclosed to unauthorized sources, without user’s consent and awareness.

• Resource Integrity: This area will ensure that client resources will be protected from

misuse or abuse in any way that might compromise the integrity of the system.

Implemented mechanisms to control executable code will regulate the usage of available

resources, including denial of access to non-authorized services. Submission of non-

authorized network messages and exhaustion of dynamic memory are some of the

hazards that should be prevented.

2.1.3 FUNCTIONALITY.

This issue addresses the capacity of a programming language to produce code that will

fulfill user expectations. The potential of a programming language to carry on tasks is

reflected through the topics evaluated under the following four major areas:

• Data Processing comprises characteristics such as object and runtime models, data type

implementation, multi-threading support, error recovering mechanisms and memory

handling policies.

• User Interface encompasses the availability of functions to create and manipulate

19

common graphical user components.

• File System evaluates the ability to access file structures and their content. Printing

capabilities might be an additional topic to include on this area.

• Networking analyzes the availability of functions to build communicating

infrastructures between local and remote computers. Common protocols and facilities to

support are sockets, datagrams and HTTP connections.

2.2 INTEGRATION OF DOWNLOADABLE CODE TO THE WORLD WIDE WEB.

Two are the current approaches to integrate downloadable code to the Web: using

interpreted programming languages, and using multiple platform-specific programs that

can be selectively downloaded according of the operating system of execution.

Microsoft, an industry leader in software for personal computers, is promoting the

implementation of the OLE/COM standard, now renamed ActiveX, as a standard for

components' execution on hypermedia Web documents. However, steering OLE/COM

into the Web implies discrimination of computer operating systems, since most of its

legacy software is definitively platform dependent. Up to the moment of writing this

thesis, Microsoft has clamed that ActiveX is aimed to be an open standard, but very few

practical facts have been shown to support such an assertion. While this open standard

becomes a reality, Microsoft is promoting a proprietary information file that can be used

by browsers to match executable code with the platform of the client computer. This

process will result on the selection of the correct code to download and execute (Kirtland,

1996).

In the case of interpreted code, the preferred approach for embedding executable code in

Web documents has been by developing browsers with a built-in interpreter to execute

downloaded programs. By using this approach, browsers have helped to support the

integration of different programming languages into the Web. This is the case of the

Python (van Rossum, 1996a), Tcl/Tk (Ousterhout, 1994) and Java programming

languages. These languages are supported by various browsers, such as Grail (van

20

Rossum, 1996b) for Python, SurfIt! (Ball, 1996) in the case of the second, and HotJava,

Navigator (Netscape, 1996b) and Internet Explorer (Microsoft, 1996b) for the last one

mentioned. All the aforesaid languages have their advantages and disadvantages to

implement portable downloadable code in the Web. Due to the aims planned for this

research, subsequent analysis on interpreted code will only refer to the Java programming

language.

2.2.1 ACTIVEX.

ActiveX can be basically described as Microsoft’s OLE/COM technology applied to the

Web. There are two required elements for this technology: OLE containers and OLE

controls. If applied to the Web, browsers will need to act as containers that embed other

OLE controls and containers. In the case of the Internet Explorer, providing this

functionality does not represent a problem, since it has been designed as an OLE

container from scratch. From the perspective of other browsers, OLE functionality needs

to be provided by an external OLE plug-in. In the case of Netscape, this functionality is

achieved by using the NCompass (NCompass, 1996) plug-in.

2.2.1.1 PORTABILITY.

Today, ActiveX controls can be produced using any programming language supporting

OLE, including C++ and Java –which has been extended by Microsoft to allow the

creation of ActiveX components. Unfortunately, these languages require non-portable

extensions that restrict their present use to the MS-Windows operating system. To

overcome such limitation, efforts have been undertaken to implement OLE/COM on the

Macintosh and Unix platforms. If these efforts succeed, they will allow ActiveX

components to be available on these platforms as well. However, porting OLE/COM to

diverse operating systems does not guarantee automatic portability of ActiveX

components, since they will still remain dependent of the platform of development

(unless a portable programming language is used to create them).

21

One solution to support non-portable ActiveX components over multiple platforms is

having a different version of the component for each operating system to support. In

practice, browsers will need to identify those versions and download the one matching the

client platform. This approach has obvious drawbacks, since multiple versions for each

control have to be developed and maintained. Nonetheless, this option is the only one

available for non-portable ActiveX components.

On a typical scenario, ActiveX controls can be found in three different file formats, prior

to their downloading (Microsoft, 1996c):

• As a self contained file: ActiveX controls can be embedded into portable executable

files. Files of this type will carry the extension .OCX, .DLL, or .EXE. This is the

simplest way to package an ActiveX control.

• As part of a cabinet (.CAB) file: Files of this format can hold one or more files needed

to execute an ActiveX control. Exactly one archive in the cabinet file is an .INF file

providing further installation information. This .INF file may refer to files in the cabinet

as well to files at other URLs.

• Referenced by a setup (.INF) file: This file type can contain information to specify the

location of various files that need to be downloaded to execute an ActiveX control. The

syntax of this file allows OLE/COM browsers to identify URLs pointing to ActiveX

files to download according to the client operating system (since this file can contain

entries for various operating systems). In short, files of this type will act as centralized

reference files to let clients know which files to download according to their computer

platform.

Apparently, Microsoft is promoting ActiveX as an Internet standard, based more on

commercial pressures derived from the legacy software and investments on OLE/COM

components, and not because of its portability features. At this point, Microsoft is using

Java as a programming language to produce portable controls within ActiveX, and not as

a global solution to portability.

22

2.2.1.2 SECURITY.

Microsoft has based ActiveX security policies on digital signatures and encryption. Since

ActiveX controls can be, and most of them are, components made of native code, no

mechanisms can be used as code verifiers. In other words, once a component is running,

it may access any resource available on the client computer without restrictions.

ActiveX mechanism to inspect and validate signatures is known as the Windows Trust

Verification service (Microsoft, 1996d). This service looks at the certificates of approval,

within a digital signature, and tells if it comes from a trusted source. Certificates are

managed as a hierarchy tree; once a trust point on the tree is found, it is reliable to trust

that all the certificates below it are trustworthy. The Windows Trust Verification service

is part of the Internet Component Download service, which is the mechanism used to

download, certify, and install ActiveX components.

In a typical scenario, ActiveX components are located and downloaded using one of the

file formats described on the portability section (portable executable, .CAB or .INF files).

Once the required files have been downloaded, the Windows Trust Verification service

will read the signature from a signature block located in these files. Signature blocks

contain information about the author of the code, a public key, and an encrypted digest of

the file’s content. If the certificate provided is marked on the local certificates' database as

trustworthy, the trust verification service will decrypt the file’s digest and will compare it

with a digest created on-the-fly using the same algorithm. This method will determine

whether that file’s content has been tempered with or not. If these checks are successful,

and if the user approves the action, the required files will be installed in the local

computer and will request self-registration to a usage module upon execution. This

module keeps record of installed controls and their versions, and will be used to

determine whether a component has become outdated or not. Further requests for a

component will result in the execution of the installed code instead of its repetitive

downloading. This behavior will represent an advantage, if it is considered that the size of

controls do not tend to be small (between 50 and 200 Kbytes on average) and common

23

Web clients use slow connections (14.4 Kbps nowadays). These circumstances would

make the time required for repetitive downloads very tedious. However, the outdating of

an installed component will result on the re-invoking of the Internet Component

Download service to download and install the new version.

As seen, the use of digital signatures offers several benefits, but they pose some

challenges and drawbacks, as well. The first issue to address is the capability of ActiveX

controls to be invoked and initialized by non-trusted sources. Digital signatures provide

authentication, which is essential to guarantee that controls were made by honest sources.

However, even when a component is trusted as non-intrinsically dangerous, the

circumstances on which it is invoked and used may not be as trusting. For example, let us

suppose that an ActiveX control is capable of accessing the local file system on the

computer of execution. Because the control is provided by a perfectly trustworthy source,

the Internet Component Download service will not delay its installation. However, it is

possible -and valid- for the same control to be referenced by any other HTML document

later accessed by the user, which may initialize and manipulate the control in a way that

would risk the integrity of the system (e.g., reading data files, deleting or modifying file

structures). One approach to limit components’ invocation and initialization is by

restricting the data that the control can receive upon initialization; an action that will

guarantee the absence of side effects, but also, may restrict the functionality of the

control. Another approach is provided by implementing certain API functions that will

externalize the different levels of safety scripting allowed by a component. Unfortunately,

these approaches are beyond the control of users and rely entirely on developers'

willingness to follow them.

A second issue arises due to the need of a central organizer for digital certificates. If

digital signatures are to succeed, the first step to accomplish will be the establishment of a

centralized organization that will act as a certificate authority for granting certificates to

applicants who meet certain registration criteria. This kind of bureaucracy will visibly

restrict most of the casual programming (e.g., shareware) found on the Internet. This is

24

specially true if it is required that programmers from all around the globe submit

applications for registration, which presumably will not come without a member’s fee.

Digital signatures offer a great service to authenticate the origin of code. However, an

endless number of security gaps have to be filled if authentication is intended as a unique

mechanism for safe downloading and execution of code. This circumstance may

transform ActiveX into a hard-to-manage group of patches and APIs to cover multiple

security scenarios.

2.2.1.3 FUNCTIONALITY.

In the case of ActiveX components, functionality is measured according to the

programming language used to develop them. In other words, ActiveX components will

have as much functionality as their programming language of origin. This circumstance is

due to the fact that components will have no constraints once their digital certificates

have been checked as trustworthy and the controls have been installed on client

computers.

Most ActiveX controls are developed using C++. This language has facilities to allow

unrestricted access to internal structures on the operating system of implementation. This

circumstance gives developers a good start to implement libraries that support networking

device access or multi-threading, which are not implemented as part of the C++ language.

Latter versions of the language have implemented an error recovering mechanism based

on exceptions.

C++ does not implement any automatic model for memory management. This

characteristic provides freedom to manipulate memory allocations and de-allocations

according to the best interest of developers. Unfortunately, it also provides a major source

of program errors.

Referring to user interfaces, ActiveX controls have been designed to fully exploit the

Windows Graphical User Interface. Up to the present time, no data is available to assure

that this behavior will be paralleled in OLE/COM implementations other than Windows.

25

2.2.2 JAVA.

Java is a language designed for programming in distributed environments. If the Internet

and the Web are to change the way we think about computers and information, Java will

help to the shift by supporting software that can be taken from random sites and be

executed on any computer platform. This characteristic helps to support document-centric

systems, where people will be able to send information to one another, including

spreadsheets, word processors or any other imaginable application that they might need to

work with. However, producing secure and portable executable code is one thing, and

incorporating it to the Web is another. In the case of Java, Netscape and Microsoft have

helped its integration by implementing built-in interpreters inside their widely available

browsers.

2.2.2.1 PORTABILITY.

If positioned on the scale between scripted languages (such as Python and Tcl/Tk) and

native code, Java stands somewhere in the middle of the scale. In other words, Java

source code needs to be compiled, yet the outcome of such compilation is not native code,

but intermediate code instead. When Java programs are compiled, each class in the source

code is transformed to a class file composed of an intermediate set of instructions called

bytecode (Sun, 1995a). Bytecode consists of binary operands targeted to a simulated CPU

known as the Java Virtual Machine (JVM), which is implemented as part of Java

interpreters. The JVM can be seen as an abstract processor that encompasses the

operations found on most computer platforms. This characteristic allows a high degree of

portability with a relatively low penalty on performance.

2.2.2.2 SECURITY.

Unlike the sole use of digital signatures in ActiveX, where users blindly trust code by

their origin, Java bases its security strategy on a radically different premise: trust no one’s

code. Java closely checks each instruction prior to execution to guarantee that it will

conform with authorization levels specified by the user.

26

As shown on Figure 3, the Java language encompasses four different security stages,

starting from the development of applications until their execution. These stages -- or

layers as they are also called -- are described in the following sections (Sun, 1995b).

2.2.2.2.1 THE LANGUAGE AND COMPILER.

Under Java, programs are restricted from directly accessing dynamic memory. In practice,

all objects used in Java programs are accessed through handles, which are address-

independent identifiers used for the manipulation of objects in the heap. Handles help to

isolate programmers from specific memory representations (thus enhancing portability),

eliminate accidental or malicious accesses to memory locations not part of the application

(therefore maintaining the integrity of the system), and helps to the implementation of the

garbage collection process (which disposes of any non-referenced object in the heap).

Handles are controlled by an automatic memory manager. The tasks of a memory

manager include to keep track of all objects in the heap and to automatically free any

memory space occupied by objects no longer referenced in a program during execution (a

process that is known as garbage collection). This combination of handles and the

automatic memory contributes to safe execution of Java code. For a description of the

benefits of handles and garbage collection, refer to Chapter 5, Section “5.3.1. Automatic

Memory Management”.

Figure 3. Java Security Model.

27

Additional restrictions enforced by the compiler are related to casting (to check that all

references to methods and variables are used on objects of the appropriate type),

conversions (e.g., integers can not be converted to objects, or vice versa) and access to

non-initialized variables. These restrictions are found on most typed languages.

2.2.2.2.2 THE CLASS LOADER.

The class loader will be responsible for storing incoming code into separate execution

environments known as namespaces. The class loader ensures that all class files from the

same origin reside in a single namespace, thus isolating class archives from different

sources. Class files, already stored on the client’s computer, will occupy their own

namespace and they will have precedence over other class files with the same name,

located on others namespaces. This constraint will guarantee that all local classes (e.g.,

system classes) are protected from being replaced or extended by imported code.

2.2.2.2.3 THE BYTECODE VERIFIER.

Security goes further than just forbidding access to dynamic memory. As previously

mentioned, Java source code is compiled to class files made of intermediate bytecode.

When class files are downloaded, a process is triggered to check that the bytecode has not

been forged to deliver malicious behavior. Such process, which is accomplished by the

bytecode verifier, will perform several checks on the downloaded class files to guarantee

their conformance to the runtime specifications. Verified Java programs will adhere to the

following constrains, prior to their execution (Yellin, 1995):

∗ All register accesses and stores are found to be valid,

∗ The parameters of all bytecode instructions are correct, and

∗ There will not be illegal data conversions.

Another important characteristic of the bytecode verification process is that it enhances

the performance of the interpreter by doing certain checks that the interpreter will not

28

need to duplicate, resulting on a slight improvement of code performance during

execution.

2.2.2.2.4 SECURITY MANAGER.

The security stages described above will ensure that the downloaded code is well formed,

and that will run according to the specifications of the Java Virtual Machine. Up to this

point, one can be sure that downloaded bytecode is valid bytecode, but one knows

nothing about its intentions. Downloaded programs may be programmed to access files,

open network connections, read system properties and execute sub-processes under user

privileges, and few users may want downloaded code to have such a freedom.

Fortunately, many of the programs’ operations can be controlled by parameters put in a

properties file located on the client computer. Such parameters will define the behavior

enforced by the security manager.

According to each different implementation of the interpreter they may or may not

observe security parameters on the parameters file. The behavior followed by the security

manager implemented on different Java interpreters is shown in Table 2 (Sun, 1996b).

This table indicates circumstances on which a security manager will follow or overlook

user parameters.

The principal properties shown in this table are acl.read and acl.write, which are used to

maintain a list of directories and archives that can be accessed by Java programs.

The compliance to these parameters vary depending on the type of Java program

implemented, the location of the code and even the interpreter applied for execution. For

example, in the fourth operation (to write a file to the “/tmp” directory), the parameter

acl.write enables the “/tmp/” directory for reading, thus allowing the completion of the

operation. However, Netscape does not allow to write files to the directory specified

(thus, ignoring to observe this parameter), while the AppletViewer and command line

interpreters do comply with the permission granted.

29

 Java program type Applet Application

 Java interpreters Netscape AppletViewer Command line

 Location of class files Network Local Network Local Local

Operations Access parameters

 acl.read acl.write

read file in
/home/me

null no ! no ! no ! yes " yes "

read file in
/home/me

/home/ no " no " yes ! yes ! yes !

write file in /tmp null no ! no ! no ! yes " yes "

write file in /tmp /tmp/ no " no " yes ! yes ! yes !

get file info null null no ! no ! no ! yes " yes "

get file info /home/ /tmp/ no " no " yes ! yes ! yes !

delete file using

File.delete()

 no no no no yes

delete file using

exec /usr/bin/rm

 no no no yes yes

read the user.name
property

 no yes no yes yes

connect to a
networking port on
the client computer

 no yes no yes yes

connect to a
networking port on
a 3rd host

 no yes no yes yes

load a library no yes no yes yes

quit the interpreter no no no yes yes

display a window
without a warning

 no yes no yes yes

!" compliant/non-compliant with the user-defined parameter.

Table 2. Access parameter compliance of prevalent Java interpreters.

It can also be seen from Table 2, that Netscape takes the more radical approach by

restricting all the operations shown. On the other hand, standalone applications executed

by the command line interpreter can operate without restrictions, but unfortunately, they

overlook user-defined parameters. Amid these interpreters stands the AppletViewer,

30

Sun’s applet interpreter included on the Java Development Kit (Sun, 1996c). This

interpreter encompasses a perfect ratio of compliance (as seen by the number of ! marks)

with the specified user parameters when executing code downloaded from the network.

User-defined parameters provide a satisfactory approach for secure execution of

downloaded code. However, the actual implementation of Java (JDK version 1.0.2, at the

time of the writing of this thesis) fails to include a cohesive infrastructure for organizing

priorities according to levels of trustworthiness (e.g., the origin of the code). Without a

doubt, more effort will be needed to develop a comprehensive parameter-based security

model in Java that can effectively control applets and applications according to user

preferences.

2.2.2.3 FUNCTIONALITY.

Java provides a high degree of functionality without sacrificing portability. Java is

considered to be an extended subset of C++. It provides a pure object-oriented

environment, with single class inheritance and multiple inheritance on interfaces, arrays,

exception handling, automatic memory management, and multithreading. However, it

does not implement structures, pointers, unions, enumerated types, bit fields, definition of

types, operator overloading or templates, which are found in C++ (for a comprehensive

list of differences between Java and C++, please refer to Chapter 3).

From the libraries included with Java, six of them encompass the main attributes of the

language:

• applet: This small library defines a base class for applets.

• awt: This library, which name is the acronym for Abstract Windowing Toolkit,

encompasses all the base classes for graphical elements.

• io: This library includes classes for handling streams, files and I/O in general.

• lang: This library contains the pivotal classes of the Java language. This library includes

the Object class (from where all classes are derived) and the Throwable class, which is

31

the root class for exceptions. Also included in the package are class wrappers for all

fundamental data types, classes for string and thread manipulation, and a class for

system access.

• net: This library comprises all classes necessary for networking access, such as

datagrams, sockets and URL connections.

• util: This library defines a small number of classes frequently used on programs, such as

Date, Vector, Hashtable and StringTokenizer classes.

From the above libraries, awt, io and net can be considered the most relevant due to their

ability to easily achieve their functionality (graphical user interfacing, file management

and networking, respectively) on a portable manner. However, they still need some

refinements to become fully functional:

• Networking connections and local file accesses still cannot be used flawlessly due to the

absence of a consistent security mechanism for handling access requests to resources.

• Graphical user components have been found difficult to implement and manage, and

frequently exhibit distinct behavior when executed on different windowing

environments.

In conclusion, these libraries will require more revisions and adjustments before they may

be considered of similar quality to those implemented by ActiveX components.

Since Java does not implement templates, it lacks a type-safe generic container library

like the Standard Template Library (Stepanov and Lee, 1995). Nonetheless, third-party

implementations, such as the Java Generic Library (ObjectSpace, 1996), help to fill the

gap. This library provides classes to handle sequences, maps sets, queues and stacks, and

algorithms to sort, swap, filter, compare, access and modify objectified elements in

containers. Unfortunately, the advantage of strong typing, as implemented in C++

templates, is not present on Java.

32

2.3 CHAPTER SUMMARY.

This chapter has covered popular approaches to integrate downloadable code to the Web,

as well as issues concerning software distribution models and the automatic execution of

code.

Security and portability were described as necessary issues to protect user resources and

provide transparent execution of programs among dissimilar operating systems. It was

also discussed that the implementation of these techniques has a repercussion on the

ability of code to properly achieve users’ goals, also known as functionality.

The last part of this chapter concludes describing ActiveX and Java as predominant

approaches to provide downloadable code to the Web. A comparison between these

approaches was made by comparing techniques included on each implementation that

affect the issues of portability, security and functionality. From such comparison it can be

inferred that none of these approaches is an absolute winner over the other, since each

one has their own characteristics suitable for different circumstances. Developers may

prefer Java if they prize portability above all, and they may prefer ActiveX if fully

exploitation of the Windows environment is highly valued.

The work on this thesis has been aimed to provide a portable implementation of a concept

mapping tool to the Web, selecting Java as the language of implementation. As a result,

the next chapter will be devoted to describe in-depth characteristics of the Java

programming language and how it differs from C++. Subsequent chapters will detail the

implementation and evaluation of the concept mapping tool development mentioned

earlier.

33

CHAPTER 3

THE JAVA PROGRAMMING LANGUAGE

In 1985, researchers at Sun Microsystems were working on an innovative windowing

system called NeWS, which stands for Networked Extensible Window System. This

system was implemented as a distributed system with client computers running

lightweight processes that communicate with server applications using messages

(Gosling, Rosenthal and Arden, 1989). Typically, client processes perform as receivers of

user events that are translated into commands and transmitted to server processes. In

response, server processes return programs for the client to execute. These programs can

perform operations on the display and receive events from the keyboard and the mouse,

thus, repeating the interaction process. Programs downloaded from servers are created to

use the PostScript programming language (Adobe, 1985), which is an interpreted

language capable to provide portability of code between different computers and

operating systems.

NeWS never caught enough market share to succeed and the project was canceled at the

beginning of the 1990’s, resulting on the merging of team members into other projects.

One of these projects, which had the mandate to develop software for consumer

electronics, was the originator of the Java language. When C++ proved not to be suitable

for the task assigned to that project, the Java programming language was created. Even if

NeWS is not strictly a predecessor of Java, the experience gained from the development

of NeWS may have helped to shape the features of the Java programming language.

34

3.1 OVERVIEW.

A programming language is usually characterized by its main features. Java is depicted as

an object-oriented, distributed, secure, multi-threaded and portable programming

language. These characteristics are detailed on the following sections.

3.1.1 OBJECT-ORIENTED.

Java is an object-oriented programming language. For programmers, this means that they

will need to focus on the application data and on the methods needed to manipulate that

data, rather than concentrating on functions and procedures. Java was designed with

features found on previously developed object oriented languages. However, it manages

to strike a balance between pure object oriented models, such as SmallTalk (Goldberg

and Robson, 1989), and non-object oriented models, such as C.

Booch (1994) described several features required for a programming language to be

labeled as object oriented:

• Abstraction: “An abstraction denotes the essential characteristics of an object that

distinguish it from all other kinds of objects and thus, provide crispy defined conceptual

boundaries, relative to the perspective of the viewer.” (Pg. 41)

The parameters relevant to this feature are the availability of instance variables and

methods, and class variables and methods. The main difference between these two

groups is that instance variables and methods can only be used through an instance

object for the class, while class variables and methods can be used directly by specifying

the qualifier of the class. Additionally, the values of instance variables are exclusive to

each instance, while the value assigned to a class variable is shared by all the instances

of that class. All of these features are supported by the Java language.

• Encapsulation: “Encapsulation is the process of hiding all the details of an object that

do not contribute to its essential characteristics.” (Pg. 50)

35

In the case of Java, several levels of hiding can be used for variables and methods. These

levels of encapsulation are linked to the following modifiers:

∗ public: no access restrictions.

∗ private: access is granted to invocations from inside the class.

∗ protected: access is allowed to invocations from within the class, from other classes

belonging to the same package, and from subclasses of the declaring class.

∗ private protected: access is forbidden to invocations that do not belong to the class of

declaration or its subclasses.

If no reserved word is used, then the access is granted to invocations made from within

the class of declaration and from classes belonging to the same package.

• Modularity: “Modularity is the property of a system that has been decomposed into a

set of cohesive and loosely coupled modules.” (Pg. 57)

Java uses two levels of modularity: by classes (where each class is a container of

variables and methods), and by packages (which is the grouping of classes into logical

units).

• Hierarchy: “Hierarchy is a ranking or ordering of abstractions.” (Pg. 59)

Java’s object model is based on a single-inheritance class hierarchy, having the class

Object as the root class. This means that all classes have just one immediate parent, and

that the class Object is a super class for all the classes. Even when the class hierarchy is

based on single-inheritance, multiple-inheritance is allowed by the use of interfaces. The

idea of interfaces is a concept borrowed from the protocols found on ObjectiveC.

Interfaces are essentially abstract classes that declare, but do not implement, methods,

which are to be implemented on inherited classes. Variables declared on interfaces are

handled as class variables for all classes using that interface.

36

3.1.2 DISTRIBUTED.

Java is a distributed programming language. It supports both the TCP/IP (Transmission

Control Protocol/Internet Protocol) and the UDP (User Datagram Protocol) families.

From these protocols, TCP/IP is used for reliable stream-based communications, and

UDP to support fast point-to-point datagram-oriented models. Java networking classes

also include classes to handle Internet addresses and to download the contents of

resources associated with a URL.

3.1.3 PORTABLE.

Java has the characteristic of being portable, or more accurately said, programs produced

on Java can be executed on any computer where a Java Virtual Machine is implemented.

This capability of being portable is based on Java’s platform neutrality and interpreted

nature.

Java’s cornerstone to allow portability is based on a proprietary set of intermediate

instructions called bytecode, which are used to conform all Java programs. Bytecode are

sequences of bytes representing instructions for the Java Virtual Machine, which is a

simulated CPU implemented on Java interpreters. In practice, when an interpreter loads a

program, each byte is evaluated in software, performing changes on the state of the virtual

CPU to reflect the changing state of execution on the program.

Additional characteristics that support portability in Java are the abstraction of primitive

data types and graphical user interfaces. In the case of primitive data types, as shown in

Table 3, they are specified to be of a fixed size regardless of the operating system of

execution.

37

To handle user interfaces, Java designers developed an abstract windowing library that

acts as a wrapper for native widgets found on major graphical environments. This way,

the use of components is unified under a single set of classes, which are independent of

the platform of execution. Figure 4 shows the class hierarchy for widgets available on the

core release of Java. These components represent just a portion of the entire abstract

windowing library.

Type Contains Size Minimum Value Maximum Value

boolean true or false 1 bit Not Applicable Not Applicable

char Unicode
character

16 bits \u0000 \uFFFF

byte signed integer 8 bits -128 127

short signed integer 16 bits -32768 32767

int signed integer 32 bits -2147483648 2147483647

long signed integer 64 bits -9223372036854775808 9223372036854775807

float IEEE 754
floating-point

32 bits ±3.40282347E+38 ±1.40239846E-45

double IEEE 754
floating-point

64 bits ±1.79769313486231570E+308 ±4.94065645841246544E-324

Table 3. Java Primitive Data Types.

Figure 4. Component classes from the Abstract Window Toolkit library.

38

Classes found on Java allow the creation of buttons, canvases, checkboxes, radio buttons,

labels, list boxes, combo boxes, scroll bars, input lines, input areas, windows, panels,

dialogs, windows, and the practical file dialog to select disk files.

3.1.4 SECURE.

Java is intended to be a secure language. Security is an important concern, since Java is

targeted to networking environments. Based on the premise that no downloaded program

is to be trusted, Java implements several security mechanisms to protect users against

malicious code.

When compiled, Java source code is checked for compliance with the memory allocation

and reference model. Under this model, declarations for direct access to memory

addresses are not allowed. Additionally, memory layout decisions are not made at

compilation time. Instead, compilers will generate handles that will be resolved to real

memory addresses at runtime, preventing programmers to hack into systems using such

addresses.

Even though the use of Java compilers ensures that source code will behave according to

safety rules, interpreters do not have the means to check that any downloaded bytecode

was produced by a well-behaved compiler. To trust downloaded code, interpreters will

subject programs to verification through a series of tests. These tests range from simple

verification of the format on instructions to validating the code through a simple theorem

verifier. Once the verification process is done, interpreters can proceed to execution

knowing that the code will run securely. For detailed information on the verification

process please refer to the Java Security section back to Chapter 2.

Unfortunately, the verification process in Java is not as secure as it is claimed, since it

fails to have formal semantics and a formal description of the type system. This

circumstance makes it impossible to formally prove the correctness of the runtime verifier

(Dean, Felten and Wallach, 1996). As a result, the verification process can not be proven

correct since its exact behavior for every possible set of bytecode is uncertain.

39

3.1.5 MULTI-THREADED.

Java is a multi-threaded language. It provides support for multiple lightweight processes

within a program. The main problem with writing multi-threaded programs resides on

making methods safe to be accessed by multiple concurrent threads. This task usually

implies the management of locks to control and synchronize access to resources.

Java supports pre-emptive multi-threading at the language level and through the support

of the runtime system and thread objects. Multi-threading is supported at the language

level by using locks -- or monitors -- for synchronization. Every class and variable has a

lock that can be used for this purpose. For example, methods within a class that are

declared synchronized do not run concurrently. This behavior is automatically enforced

by granting the class lock to the first thread entering a synchronized method. The lock

will be released by the thread when exiting the method or when put to sleep. Support for

threads at the class level is provided by the Thread class, which implements methods to

start, stop and handle threads, and the Runnable interface, which provides the abstraction

required for an instances of a class to be treated as a thread.

3.2 PROGRAMMING FOR THE INTERNET AND THE WORLD WIDE WEB.

Rather than creating new HTML extensions, Java made popular the notion of

downloadable programs that can run inside Web browsers. The alpha release version of

Java, back in 1995, included a Web browser called HotJava. This browser allowed

normal Web navigation plus the ability to execute Java applets hyperlinked to HTML

documents. Shortly thereafter, Netscape announced its intention to license Java to

integrate it to its second version of its market-leading Navigator browser.

HotJava and Netscape Navigator are not the only browsers that support Java applets, but

they were first in order of appearance and current market share, respectively. Both these

browsers have promoted the use of Java as a programming language for the Web.

However, HotJava and Netscape Navigator have followed different patterns of

development and, up to the day of writing this thesis, HotJava has only reached beta

40

release status while Navigator is at the brink of version 4. Due to its wide availability and

advanced state of development, Netscape Navigator will be chosen for further studies on

the integration of Java to the Web.

In order to evaluate the suitability of Java as a programming language for the Web, two

characteristics have to be observed: first, the level of integration with browsers, and

second, the availability of tools to perform distributed operations.

3.2.1 INTEGRATION WITH NETSCAPE NAVIGATOR.

Netscape has developed LiveConnect (Netscape, 1996c) to act as an integrator between

JavaScript and Java. LiveConnect allows JavaScript code to access variables, methods

and classes found on applets embedded on Web documents. Java classes do not need any

special settings to be invoked from JavaScript.

Figure 5. Code example for a Java method invocation from JavaScript.

Figure 5 shows a code example where a Java method is invoked from a JavaScript

function embedded on an HTML document. In this example, the method

<SCRIPT>
function handleEvent(id, value1, value2, value3)
{
 document.jKSImapplet.handleJavaScriptEvent(id,
 value1,
 value2,
 value3)
}
</SCRIPT>

<FORM NAME=Options>
 <SELECT NAME=listNEW>
 <OPTION SELECTED> Node - Rectangle
 <OPTION> Node - Rounded Rectangle
 <OPTION> Node - Ellipse
 <OPTION> Line - Binary
 <OPTION> Line - Trinary
 <OPTION> Line - Quadrary
 <OPTION> Context Box
 </SELECT>
 <INPUT TYPE="BUTTON" VALUE="New"
 onClick="handleEvent(0,
 document.Options.listNEW.selectedIndex,
 0,
 null)">
</FORM>

41

handleJavaScriptEvent, which belongs to the jKSImapplet Java class declared on the

current document, is invoked after a button (part of an HTML form) is pressed to process

choices made on a selection box. As seen from the function handleEvent, the invocation

of Java methods just requires the definition of a hierarchical path for locating applet’s

classes and variables.

However, enabling communication in the other direction (from Java to JavaScript)

requires a little more effort. In such case, Java applets will need to subclass objects

derived from the JSObject and JSException classes, which are part of the javascript

package provided by Netscape. From these classes, the JSObject class enables Java

applets to access JavaScript methods and properties, and JSException allows the handling

of exceptions thrown by JavaScript code returning an error.

Figure 6 shows a code example taken from the LiveConnect introduction documentation,

where the eval method from the class JSObject is used to send an expression to

JavaScript each time the mouse button is released. In this example the expression sent is

an invocation to the alert JavaScript method.

Figure 6. Code Example for a JavaScript method invocation from Java.

3.2.2 INTERNET NETWORKING.

The java.net package included as part of Java provides the infrastructure needed to

achieve networking operations. The basic protocols to deal with the Internet are

implemented in a few classes that encapsulate their functionality without involving the

programmer with low-level networking details. Classes included in this package allow

Public void init()
{
 JSObject win = JSObject.getWindow(this);
}

public boolean mouseUp(Event e, int x, int y)
{
 win.eval("alert(\"Hello world!\");");
 return true;
}

42

one to represent Internet addresses, to access resources referenced by URLs, to perform

low-level networking using datagrams, and to communicate using stream sockets.

Basic classes required for networking operations are URL and InetAddress. These classes,

and their importance to initialize other classes, are explained as follows:

• URL: The URL class implements Internet Resource Locators. It provides the most basic

interface to perform networking operations, since resources referred by a URL can be

downloaded using a single method invocation. URL is also used to initialize objects of

the URLConnection class. This class provides additional methods than those provided

by the URL class to perform complex manipulation of Internet resources. For example,

using URLConnection objects it is possible to obtain information about the resource

pointed, its content type, length, and date of last modification. Additionally, if the

protocol used supports write operations, then methods implemented in this class can

allow overwriting the content of a resource pointed to by a URL.

• InetAddress: This class supports Internet addresses, and is used when performing

networking operations using sockets and datagrams. The InetAddress class does not

have a public constructor method, but supports static factory methods to create new

instances. Such instances can contain the address of the local host or the address of a

host specified by name. The InetAddress class is used to initialize socket and datagram

communications, which are explained as follows:

∗ Datagrams: UDP datagrams are fire-and-forget packets of information that are passed

over the network. They provide fast communication. The tradeoff is that they are not

guaranteed to reach their destination, and if they do, separate datagrams may not even

arrive in the order they were sent. However, when optimal performance is required and

the overhead of doing custom verification is justified, datagrams are a valuable

mechanism to have available. Classes used for datagram communication are

DatagramPacket (data container class) and DatagramSocket (datagram packet sender

and receiver class).

43

∗ Sockets: TCP/IP sockets implement reliable bi-directional point-to-point, stream-

based connections between hosts on the Internet. A common model for network

communication is to have one or more clients sending requests to a single server

program. In such cases the server uses an instance of the ServerSocket class to accept

connections from clients. When a client reaches the port on which the server is

listening, the server allocates a new Socket object in a new port for subsequent

communication between server and client. After allocating the new connection, the

server returns to the listen mode for receiving additional client connections.

3.3 LANGUAGE COMPARISON BETWEEN JAVA AND C++.

Java is a language that borrows much of its terminology and syntax from C++. However,

Java is considered a simpler language than C++, since a number of C++ features have

been removed from the Java implementation. In certain ways, this reduction allows

programmers, familiar with C++, to easily climb the learning curve. Java eliminates some

C++ redundancies and non-object-oriented characteristics maintained as legacy from C.

A number of main differences exist between Java and C++. These differences, which

range from slight modifications to complete removal of features, are described as follows:

• No header files: Header files are considered of great benefit for data hiding, since they

allow one to declare the prototypes for classes in a readable format while having the

actual implementation in a binary file for distribution. On the other hand, the existence

of header files creates inconveniences such the maintenance required to keep the

consistency between header file declarations and the source file implementation. Java

has eliminated header files, and it maintains all the information about a class inside the

class implementation.

• No preprocessor: Java does not include any kind of preprocessor. One of the jobs of a

preprocessor is to search for special commands that begin with a hash mark “#”. These

commands perform conditional compilation and macro replacement. It may seem hard

for C++ developers to program without #define or #ifdef, but Java can make do without

44

these constructs. In the case of #define, Java relies on the final keyword to achieve some

of its functionality. Additionally, the import statement has similar characteristics to the

#include command, and #ifdef commands can be partially simulated by using compilers

that optimize blocks of code delimited by boolean expressions that have static values

(e.g., if (false))

• No global functions or global variables: In Java, methods and variables are declared

within classes. Likewise, every class is part of a package, resulting on all methods and

variables to have fully qualified names. These names are formed using the package

name, the class name and the variable or method name. By having static variables and

methods it is possible to simulate global functions and variables, but it is not possible to

have name conflicts due to the naming convention previously described.

• No goto statement: Java does not implement the goto statement and thus, it eliminates

the main instrument of the so called “spaghetti code." However, the keywords break and

continue cover some important and legitimate uses of goto on looping structures.

Furthermore, Java’s well-defined exception handling compensates for the absence of

this statement.

• No operator overloading: Method overloading is a technique that allows the declaration

of several methods with the same name but with different list arguments. Operator

overloading is a similar technique, but it allows symbols to be declared as methods to

perform operations according to the type of the parameters involved. Up to the present

version, Java allows method overloading but it does not allow operator overloading.

• No structures, unions, typedefs, bitfields, enumerated types or variable-length

argument lists: Java does not support the struct and union types found in C++;

however, structures can be simulated using classes without methods. Additionally, Java

neither supports typedefs (to define new aliases for type names) nor bitfields (which can

be used to interface hardware devices, for example). Java does not allow one to define

methods that take a variable number of arguments. Method overloading and arrays can

act as replacements for simple cases of variable-length argument lists. The absence of

45

enumerated types is a missing feature that may be seen as unusual, since Java has the

characteristic of being strongly typed. However, this circumstance may be the result of a

design decision to maintain simplicity on the types handled by the language.

• No const parameter qualifier: In C++, when a parameter is specified with the const

qualifier, the compiler makes sure that the value assigned to that variable will remain

unaltered during its scope. As a result, methods receiving a variable passed as a const

parameter are not allowed to make modifications to its value. In Java, there is no

automatic mechanism to perform this operation.

• No templates: C++ templates are type-parameterized classes or functions. Template

based class libraries are not just type safe but also enhance reuse of structures for

different type formats. Templates are also of relevance on the context of containers.

Since object-based (non-template) containers do not have the mechanisms to enforce

certain object type for their elements, there is no way to ensure that a container actually

holds objects of the expected type.

• Characters are Unicode characters: In Java, values of type char are not signed.

Additionally, characters and strings are composed of 16-bit Unicode characters,

allowing easy internationalization of programs that do not use the Latin alphabet. The

Unicode character set is composed of more that 34,000 distinct code characters, where

the first 256 are ASCII compatible.

• Arrays and Strings are objects: Arrays and strings behave just as regular objects: they

are manipulated by reference, they can be dynamically created with new, and they are

automatically garbage collected when no longer needed. However, they are special in

the sense that they can be manipulated differently than objects. As shown on Figure 7,

arrays and strings can be directly initialized by specifying their value. In the case of

strings, concatenation can be achieved by placing addition symbols between string

variables and constants.

46

Figure 7. Code example on initialization of strings and arrays.

• null is a reserved keyword and boolean is a primitive data type: In Java, null is a value

that indicates an absence of reference. Unlike C++, where NULL is just a constant

defined to be 0, null in Java is a reserved word that has no value and can not be assigned

to primitive data types. On the other hand, boolean is defined as a primitive data type

that can be assigned a value of true or false. In contrast to C++, boolean values are not

integers; they can not be treated as integers, and may never be cast to or from any other

type.

• Primitive data types are fixed in size and sign, and can not be cast to objects, or

viceversa: As previously seen in Table 3 (pg. 37), boolean, char, byte, short, int, long,

float and double are primitive data types available in Java. These variables are always

fixed in sign and size, unlike C++ where an integer may be 16, 32 or 64 bits, and

characters may be signed or unsigned depending on the operating system of execution.

Additionally, Java does not allow conversions between primitive data types and object

references, as in C++ (e.g., casting an integer to a pointer).

• Parameter-passing is always by value: There are two techniques to pass parameters to

C++ functions: call by value and call by reference. When passing variables to a function

using “call by value” a copy of the original data is passed. This circumstance allows

modifications on the copy without altering the value of the original variable. On the

other hand, when passing a variable using “call by reference” an alias is created for the

variable itself. This alias represents the memory address where the variable is located.

Under this technique, modifications on the variable passed to the function will result on

modifications of the original value as well. In the case of Java, variables are always

passed to methods by value. For primitive data types, this assertion means that an

independent copy of the original value is passed. In the case of handles to objects,

String subject = “John Doe”;

String aliases[] = [“Steven Sagan”, “Vitto Corleone”];

String message = subject + “ is also known as ” + aliases[1];

47

copies of the handles are submitted. This circumstance allows the modification of the

object referenced by the original handle, and does not allow the modification of the

handle (this behavior is achieved in C++ by using the const modifier on pointers and

references passed to functions). Java has no mechanisms to modify the original value of

arguments from within methods, whether it is a handle or a primitive data type. One

way to modify the content of a variable when submitted to a method as an argument is

by assigning the return value of the method to that variable upon return.

• Threads and synchronization are part of the core language: As previously explained

on the Multi-threaded section early on this chapter, synchronization in Java is an

intrinsic part of the language. Synchronization is achieved by the use and enforcement

of locks, which prevent multiple threads from simultaneously accessing critical sections

of code. The Thread class encapsulates all the information about a single thread of

control running on the Java interpreter. This type of support for threads and

synchronization of threads is a feature that it is not implemented as part of the C++

language.

• Automatic memory management: Objects in Java are created on the heap using the new

keyword. However, there is no delete keyword to dispose of them, as in C++. This is

because Java implements a memory manager to handle all references to the heap and

disposes of objects that are not longer referenced or used in a program. The disposing of

objects and the freeing of memory is performed using a process called garbage

collection. The garbage collector process runs on a low-priority thread whenever the

system is idling, or when a request for memory allocation fails to find enough free

memory to satisfy such request. The concept of automatic memory management is

foreign to C++. In C++, programmers have the responsibility to remember when and

where to dispose of allocated objects. It is worth mentioning that garbage collection

processes will never be as efficient as explicit, well-written memory allocation and

deallocation routines written by programmers. However, it does make programming

easier and less prone to errors.

48

• Single inheritance on classes, multiple inheritance with interfaces: C++ allows

classes to have more than one superclass, using a technique known as multiple

inheritance. This technique allows class designers to mix various attributes from

different branches of a class hierarchy. Java does not implement multiple class

inheritance, but implements multiple interface inheritance. Interfaces are just like

classes, but they are not allowed either to declare instance variables, or implement

methods.

3.4 CHAPTER SUMMARY.

This chapter covered the fundamental aspects of the Java language, which was described

as an object-oriented, distributed, portable, secure and multi-threaded programming

language. After discussing these characteristics, Java was scrutinized to find its suitability

as a programming language for the Web.

This chapter also showed Netscape’s LiveConnect environment as a fundamental part to

integrate Java with the Navigator browser. The use of JavaScript and Netscape-tailored

Java classes were discussed as required elements to achieve this integration.

Additionally, Java networking classes were explained. Classes that handle Internet

addresses and Uniform Resource Locators were introduced as the basis to support

datagram and socket communications, and URL connections.

This chapter concluded with a section detailing the main differences between Java and

C++. In its role as the most popular programming language, C++ is compared with Java

with respect to aspects ranging from the structure of primitive data types to templates and

automatic memory management.

Chapter 4 is an overview of the Java concept mapping tool implemented as a test case for

this research. This chapter will show previous concept mapping tool developments, as

well as the motivation underlying such developments. The system architecture for the test

case, which has been named jKSImapper, is further discussed in Chapter 5. That chapter

will also discuss lessons learned when porting previously developed C++ classes to Java.

49

CHAPTER 4

IMPLEMENTING A JAVA CONCEPT MAPPING TOOL

The purpose of the systems implemented as test cases for this research is to provide

support for distributed interaction of concept maps on the Internet and the Web. To

achieve this goal, two primary steps were required: first, to develop a class structure to

support the manipulation of concept maps; and second, to extend such a system to allow

multi-user elicitation of concept maps on the World Wide Web.

The work required to accomplish these steps was not done under isolated circumstances,

but as part of a previously established effort to promote the use of concept maps in

several areas of expertise. In particular, the test case systems implemented were highly

influenced by previous developments at the Knowledge Science Institute of the

University of Calgary. These developments, and their path of influence, are briefly

described on the following section.

4.1 PREVIOUS WORK.

The Knowledge Science Institute has a comprehensive history of concept mapping

development. Initial implementations have encouraged the development of subsequent

systems, as shown on Figure 8. In this figure, links are used to construct a development

hierarchy where nodes depict diverse systems and class libraries. Nodes are differentiated

by their shape and fill color. Ellipse nodes represent class libraries (in this case, CMap

and jCMap); rectangular nodes represent standalone applications; and shaded rectangular

nodes represent Web-embeddable applets and plug-ins.

50

Figure 8. Concept Mapping Development at the Knowledge Science Institute.

Each of these concept mapping developments is briefly explained as follows (Gaines,

Kremer and Flores-Méndez, 1996):

• KDraw (Gaines, 1993) is a visual language version of the CLASSIC (Borgida,

Brachman, McGuiness and Resnick, 1989) knowledge representation language.

Developed for the Apple Macintosh, this system implements formal concept maps for

single user environments. This system allows undo and redo.

• A direct descendant of KDraw, KMap (Gaines and Shaw, 1995b) is a generic visual

language tool that can emulate specific languages, including KDraw. All operations on

the concept maps are sent as events to AppleScript (Goodman, 1993), enabling KMap to

be programmed for different applications.

Characteristics: Platforms:

∗ Formal ∗ Macintosh

∗ Executable

∗ Undo/redo

51

• Mediator is a generic knowledge management system. Mediator 0 is a system derived

from KMap, which has been extended to implement scripts for enabling two users to

access concept maps in a synchronous, “What-You-See-Is-What-I-See” (WYSIWIS)

manner.

• Mediator 1 is implemented using a concept mapping tool known as XConMap

(Lapsley, 1995). XConMap is essentially a re-implementation of KMap under the Unix

XWindows operating system. It was designed to provide an Internet implementation of

Mediator by working in conjunction with Netscape Navigator.

• KWrite is a fully capable word processor implementation. This system allows to embed

multimedia information and concept maps produced by KMap and KDraw.

Characteristics: Platforms:

∗ Formal and informal (language definable) ∗ Macintosh

∗ Executable (in KDraw emulation)

∗ Undo/redo

∗ Hypermedia

∗ Scriptable (AppleScript)

Characteristics: Platforms:

∗ Multi-user interface (weak WYSIWIS) ∗ Macintosh

∗ Undo/redo

∗ Hypermedia

∗ Scriptable (AppleScript)

Characteristics: Platforms:

∗ Hypermedia ∗ XWindows

52

• Accord (Kremer, 1993) is a concept mapping tool based on KMap. This system is

implemented on the Microsoft Windows operating system. In addition to the features

found on KMap, Accord also implements the notion of persistent hyperbases.

• Smart Ideas (Smart Ideas, 1996) is a concept mapping tool that was developed based

on the Accord implementation. This system is available as a commercial product.

• NPSmart Ideas is the Netscape plug-in version of Smart Ideas. It allows browsers to

access concept maps stored as read-only resources on the Internet.

Characteristics: Platforms:

∗ Formal ∗ Macintosh

∗ Executable

∗ Undo/redo

∗ Hypermedia

∗ Scriptable (AppleScript)

Characteristics: Platforms:

∗ Hypermedia ∗ Windows-16

∗ Persistent hyperbase

Characteristics: Platforms:

∗ Commercial system (as opposed to research) ∗ Windows-32

∗ Hypermedia

∗ Persistent hyperbase

Characteristics: Platforms:

∗ Commercial system (as opposed to research) ∗ Windows-32

∗ Web browser-embeddable

∗ Hypermedia

∗ Persistent hyperbase

53

• KSIMapper is the demonstration program for the CMap class library, which was

developed using the C++ programming language. This application allows manipulation

of informal concept maps on single-user environments.

• NPKSIMapper is the Netscape plug-in version of KSIMapper. It implements functions

to allow interaction with Netscape Navigator embeddable widgets through JavaScript.

• Constraint Graphs (Kremer, 1996) is a system based on the KSIMapper

implementation. This system has been extended to emulate formal visual languages.

• NPConstraint Graphs is the Netscape Navigator plug-in version of Constraint Graphs.

Characteristics: Platforms:

∗ Undo/redo ∗ Windows-32

Characteristics: Platforms:

∗ Web browser-embeddable ∗ Windows-32

∗ Multi-user interface (weak WYSIWIS)

∗ Undo/redo

∗ Hypermedia

∗ Scriptable (JavaScript)

Characteristics: Platforms:

∗ Formal ∗ Windows-32

∗ Can be constrained to multiple formal visual languages

∗ Undo/redo

54

• jKSImapper is the Java implementation of KSIMapper. This system is based on the

Java jCMap class library, which was derived from the C++ CMap class library.

jKSImapper allows manipulation of concept maps on single and multi-user

environments.

• jKSImapplet is the Web-browser-embeddable and downloadable version of

jKSImapper.

• jKSImapplet Navigator is a Java applet based on jKSImapplet that implements an

interactive interface for World Wide Web navigation. This browser-embeddable applet

Characteristics: Platforms:

∗ Web browser-embeddable ∗ Windows-32

∗ Formal

∗ Can be constrained to multiple formal visual languages

∗ Multi-user interface (weak WYSIWIS)

∗ Undo/redo

∗ Hypermedia

∗ Scriptable (JavaScript)

Characteristics: Platforms:

∗ Multi-user interface (weak WYSIWIS) All platforms where a

∗ Undo/redo Java interpreter is

 implemented.

Characteristics: Platforms:

∗ Web browser-embeddable All platforms where a

∗ Multi-user interface (weak WYSIWIS) Java interpreter is

∗ Undo/redo implemented.

∗ Hypermedia

∗ Scriptable (JavaScript)

55

allows URL addresses to be associated with nodes for accessing hyperlinked HTML

documents and concept maps. This system also supports multi-user environments.

• CMap is a C++ class library on which the KSIMapper and Constraint Graphs

applications are based.

• jCMap is a Java class library on which the jKSImapper and jKSImapplet applications

are based.

Of the programs and classes described above, four were specifically implemented for this

research. These are the jCMap class library, the jKSImapper standalone application, the

jKSImapplet Java applet, and jKSImapplet Navigator. jKSImapplet Navigator has been

included as an example of the application of jKSImapplet as a Web navigational tool.

4.2 SYSTEM REQUIREMENTS.

The purpose of this section is to describe the requirements for the test case systems. As

mentioned at the beginning of this chapter, there are two general requirements for the test

case system: it should be able (a) to handle concept maps, and (b) to allow multi-user

manipulation of those concept maps on the Web. These issues are addressed on the

following sections.

4.2.1 DEVELOPMENT FRAMEWORK.

The creation of a development framework requires the definition and understanding of

the components of the system to construct. In this case, the definition and understanding

Characteristics: Platforms:

∗ Web browser-embeddable All platforms where a

∗ Multi-user interface (weak WYSIWIS) Java interpreter is

∗ Undo/redo implemented.

∗ Hypermedia

∗ Scriptable (JavaScript)

56

of the entity concept map will help to elicit the requirements for a concept mapping

system.

Unfortunately, the term “concept map” eludes a concise description and definition. In

Chapter 1, concept maps were defined as diagrams composed of links and nodes of

different types. However, this description is too broad and ambiguous to be useful.

Instead, a definition for concept maps can be found by examining their use under the light

of three levels of analysis (Gaines and Shaw, 1995b):

• The abstract perspective: From an abstract perspective, the basic concept map data

structure consists of typed nodes, some of which are linked. Each node has a type, a

unique identifier and a content (which may itself be structured, for example, as label

plus other data). A node may enclose other nodes, allowing the construction of

hypergraph structures in which a single link may connect sets of nodes. Links are

visually represented by lines between nodes. These lines may or may not contain arrow

heads to represent logical flow.

• The visualization perspective: From a visualization perspective, concept maps may be

seen as diagrams, using the term to mean a drawing with reasonably well understood

meaning in certain domains. To provide a consistent relation between the visual features

and their internal infrastructure, the visual attributes of nodes and links need to be in

one-to-one unique correspondence with their types. The node type may determine, and

itself be determined by, the node shape, frame color, fill color, whether the type name is

displayed and, if so, in what type face, style, size and color, and whether part of the

content is displayed and, if so, in what type face, style, size and color. If links are typed,

their types may determine, and be determined by, labeling, line thickness, color, cross-

hatching, or other forms of decoration.

• The discourse perspective: From a discourse perspective, concept maps may be seen as

an instrument to represent and communicate knowledge through visual languages. In

this case, an abstract structure represented as a diagram in visual terms can be used as a

knowledge representation and communication instrument when interpreted by some

57

community. This circumstance creates an exact parallel between natural languages and

visual languages, where the abstract grammatical structures and their expressions in a

medium take on meaning only through the practices of a community of discourse.

Each of the perspectives mentioned above represents one of three layers that can be

supported by concept mapping tools. In the case of the test case application presented, the

class library used to implement it supports each of these perspectives to certain extend, as

explained as follows:

• The abstract perspective is supported by defining node and link classes, and by defining

classes that allow their manipulation inside logical data structures. A context box class,

which is a variation of the node class, allows the arrangement of nodes inside its

boundaries for grouping purposes. The node, context box and link classes implement

content in the form of text labels. The link class has attributes to store the number of

lines segments composing each link instance, as well as information on the attachment,

if any, maintained by each one of those line segments. Hypermedia behavior is

supported by using networking classes that allow interaction with remote processes and

access to Internet resources.

• The visualization perspective is supported by classes that display visual attributes

related to the underlying classes from the abstract layer. Visualization classes allow the

displaying of shape and text attributes for nodes; and line segments, arrow heads and a

text label for links. These attributes can be customized using a color palette and, in the

case of text labels, different font types, styles and sizes.

• The discourse perspective is supported on its most basic form, meaning that knowledge

structures can be freely constructed, but without any automated process enforcing

specific formalisms. This characteristic can represent an advantage for authors willing to

extend the system to support their formal representation of choice. As it will be

mentioned further on Chapter 6, implementation of formalisms is part of future work

proposed for this system.

58

4.2.2 SUPPORTING MULTI-USER ENVIRONMENTS.

In recent years, computers have evolved from being purely a computational machine to a

symbolic manipulator (word processors, graphics applications, databases) and, more

recently, to a vehicle for human communication (e-mail) and knowledge repository

(artificial intelligence, expert systems) (Gaines, 1991). Eventually, computers have

matured to interact with the surrounding human environment. The first computers viewed

data as the center of computation, with almost no human interaction as part their

execution process. As time passed, this scenario evolved, and computers started to

support interaction not just with single users but with entire communities of users

working together.

Currently, most software systems are designed to support interaction between user and

computer. However, market exigencies urge for software that also supports interaction

between users, since much of an individual’s work is within the context of a group.

Organizations are not made up of people working individually at their desks, but rather

people cooperating and collaborating as groups or teams. In this context, Computer

Supported Collaborative Work (CSCW) is an area that studies the use of computers to

enhance and extend people's natural abilities to collaborate for achieving their goals

(Kremer, 1993). As shown in Table 4 (Ellis, Gibbs and Reln, 1991), CSCW systems must

provide support for individuals working alone or in sub-groups, and at the same or at

different times.

The interaction modes shown in this table are explained as follows:

 Same Place Different Place

Same Time face-to-face meetings synchronous remote interaction

Different Time asynchronous interaction asynchronous remote interaction

Table 4. Interaction modes of CSCW systems.

59

• Face-to-face meetings: Face-to-face meetings are the same as traditional meetings

involving whiteboards. Their difference, however, resides in the application of

computational tools to achieve goals. In a common scenario, meeting members use

computer terminals to manipulate shared information, while facilitators can use large

electronic boards to guide and synchronize members’ efforts.

• Synchronous remote interaction: Synchronous remote interaction is similar to face-to-

face meetings in the sense that members work at the same time, as they do in meetings,

but using terminals from different locations. This interaction mode has the disadvantage

of restricting the use of gestures and basic human interaction, which are common

components of traditional meetings.

• Asynchronous interaction and asynchronous remote interaction: Under these

interaction modes, systems are used by one member at a time (single user environment),

regardless of whether the system is executed locally (asynchronous interaction) or from

a remote computer (asynchronous remote interaction).

The four interaction models mentioned above are covered by the present test case

implementations. Remote interaction is supported by a server process that acts as a

command broadcaster and central repository of information. Further information

regarding the server implementation is detailed on Chapter 5, under the Section “5.2.

Runtime System Architecture.”

4.3 JKSIMAPPER.

This section describes the features implemented by the standalone Java concept mapping

system, which is named jKSImapper. This system is based on the Java jCMap class

library, which descends from a previous developed C++ class library known as the CMap

class library.

jKSImapper is a standalone Java application that allows the generation and manipulation

of concept maps. This system uses a graphical user interface based on windows, dialogs

60

and menus to handle user requests. A pointing device is also required to modify specific

attributes of objects, such as position, size and link attachment.

Figure 9. jKSImapper components.

As shown on Figure 9, jKSImapper is composed of two general component types: a

Windows Manager and a group of zero or more Concept Map Windows.

4.3.1 THE WINDOWS MANAGER.

As its name suggests, the Windows Manager is designed to control and to organize

several windows, which in this case will contain one concept map per instance. The

Windows Manager can be seen more as an abstract tracker of displayed windows, than a

part of the concept mapping process.

One advantage of using this approach is that one single Java interpreter supports all the

concept maps that a user might want to utilize at a given time. If each concept map

window has been implemented to use its own instance of the interpreter, it would have

resulted on more resources being consumed to maintain each one of those independent

instances.

61

Figure 10. The Windows Manager.

The Windows Manager implements procedures that allow users to display and access

concept mapping elicitation windows. As shown on Figure 10, there are three options on

the menu bar of a Windows Manager. These options are:

• The “File” menu option: This pull-down menu contains most of the options of the

Windows Manager. These options allow users to initiate concept maps from scratch, to

load concept mapping files stored on local or remote computers, and to exit the

application. Remote files can be downloaded from a jKSImapper Server, or from the

Web using URLs.

As will be explained further in Chapter 5, the opening of a local file indicates that events

generated by the user will be handled locally, without the mediation of any other (locally

or remote) process. The same policy applies to files downloaded using URLs. On the

other hand, the opening of a server file implies that the user is joining or starting a

remote session on the server. Each one of these sessions support one independent

concept mapping elicitation.

• The “Windows” menu option: This menu option contains one single sub-option named

“List...”, which displays a list containing all active Concept Map Windows. By selecting

items from this list, users are able to bring to top those existing windows. This option is

of great value for locating specific concept map windows when the screen is cluttered

with multiple windows from this or other applications.

62

• The “Help” menu option: Up to the present implementation, just an “About” option is

supported by this menu. Selecting this option will display an information dialog

containing the name of the application, its place and year of development, and a

copyright notice.

4.3.2 THE CONCEPT MAP WINDOW.

Concept Map Windows provides the core functionality for concept mapping elicitation.

As shown in Figure 11, Concept Map Windows can manipulate nodes, links, and context

boxes, to construct complex structures.

In this figure, a graph created using the formal representation language known as

Conceptual Graphs (Sowa, 1984) is used as an example. This graph represents the

Figure 11. A formal concept map describing the sentence "Tom believes that

Mary wants to marry a sailor."

63

sentence “Tom believes that Mary wants to marry a sailor.” The structure shown on the

concept map can be read as “There exists a belief whose experiencer is Tom and whose

patient is the proposition that there exists a want whose experiencer is Mary and whose

patient is the situation that there exists a marriage whose agent is something (Mary) and

whose patient is some sailor.”

Concept Map Windows rely on a set of predefined operations to modify the composition

of concept maps. As shown in Table 5, these operations are applied to one or several

target elements and can be activated by using specific user interface components.

 Target Element

Operation Node Link Context Box Concept Map

Creation

Deletion or or or

Selection

Move

Resize

Attach/Detach

Text Label and and and

Font

Color

Shape

Line Segments

Arrow Heads

Undo/Redo
Save and

User Interface Mediums: Menu Mouse Keyboard

Table 5. Operations performed in Concept Map Windows.

64

The operations shown in this table are explained as follows:

• Creation of elements: This operation provides the initialization of three different

concept mapping objects, which are described below:

∗ Node: As shown on Figure 12, nodes can be instantiated as rectangle, ellipse, or

rounded rectangle shapes. The default attributes for a node are: empty text label, white

fill color, black color for border and text, and plain style 12-point Courier font. Text

labels are displayed at the center of the node. New nodes can be instantiated by using

the “Node | New | <shape>” menu option (where <shape> represents one of the shapes

available).

∗ Link: As shown on Figure 13, links can be created as a two (binary), three (trinary), or

four (quadrary) line-segmented arcs. The default attributes for a link are: empty text

label, no arrow heads, black color for lines, arrow heads and text, and plain style 12-

point Courier font. Text labels on links are positioned at the center of the joining point

of the line segments. New links can be instantiated by using the “Link | New | <line-

segments>” menu option (where <line-segments> represents one of the available link

configurations).

∗ Context Box: Context boxes can be considered a specialized type of node. Context

boxes share all the attributes existent for nodes except for the shape and the position of

the text label. As shown on Figure 14, context boxes are just delivered in a single

shape: as a rectangular frame containing an empty rectangular space. Context boxes

Figure 12. Available Shapes for Nodes.

Figure 13. Available Links.

65

have the peculiarity that the inside rectangle has a small offset downwards in

comparison with the geometrical center of the external rectangle. This offset creates a

header at the upper edge, which is used for displaying a text label. Context boxes are

instantiated by using the “ContextBox | New” menu option. The default attributes for a

Context box are: empty text label, white fill color, black color for border and text, and

plain style 12-point Courier font.

In general, newly created objects are displayed on the upper left corner of the painting

area.

• Deletion of elements: This operation is applied to selected objects. Once this pre-

condition is fulfilled, selected elements are removed by choosing the “Edit | Delete”

option from the menu, or by pressing the <delete> key from the keyboard.

• Selection of elements: Selection of elements is achieved using any of two methods: (a)

by mouse-clicking on the element (the body in nodes, lines in links, and in the frame of

context boxes); or (b) by enclosing the targeted element(s) with the selection rubber

band.

Figure 15 shows three selected elements: the rectangular node “BELIEF,” the circular

node “PTNT,” and the link joining them. As it is depicted, the visual representation of a

selection state is marked by small solid squares at the edges of the rectangular area

occupied by the element, in the case of a node or context box, or by small squares

located at the extremities of line segments, in the case of a link. Figure 15 also shows a

dotted rectangle surrounding the node labeled “PERSON: Tom.” This dotted rectangle

is called the selection rubber band, and it is used to select one or more elements of a

concept map. The selection rubber band is invoked by clicking on an empty point of the

drawing area, and dragging the mouse to a position that will enclose the element(s) to

Figure 14. Example of a Context Box.

66

select. To add elements to an existing selection, users may click on new elements while

holding the <control> key. This technique is also used to deselect one of the elements

of a group of selected objects.

• Movement of elements: Movement is accomplished by mouse-clicking inside the

boundaries of an element and then dragging the mouse without releasing the button.

Links are moved by clicking on one of their line segments. The movement of links with

line segments attached to nodes, as well as the movement of nodes with line segments

attached to them, will result on the resizing of those line segments. Additionally, the

dimensions of a line segment will be determined by the joining point of a link and the

closest point of attachment to a node. In the case of context boxes, their movement will

result on the movement of all the elements enclosed by their frame.

It is worth mentioning that the movement of a selected object will result in the movement

of all selected objects by the same offset.

• Resizing of elements: Nodes and context boxes can be resized by clicking and dragging

one of their selection squares (thus, selection mode is a pre-requisite). Links cannot be

resized, but (as previously explained under “Movement of elements”) their line

Figure 15. jKSImapper selection example.

67

segments can be resized if the joining point of a link is moved while the line segments

are attached to a node or context box.

• Attachment/detachment of line segments: Selection squares on the edges of link line

segments on a link can be clicked and dragged over the body of a node (or over the

frame of a context box) for attachment. Attached line segments can be detached by

dragging the line segment’s selection square to an empty point on the drawing area. In

case of detachment, line segments will return to a default stationary position.

• Editing of text labels: Nodes, context boxes and links support text labels. A text label is

assigned to selected objects by using the “Edit | Set Label | Edit...” menu option. This

option displays a dialog box requesting a string of characters to be used as a label. If just

one object is selected when invoking this option, the object’s current label is displayed

for edition. No text will be displayed if multiple objects are found to be selected.

• Selecting font properties for text labels: Text labels can support three different font

attributes, which are described as follows:

∗ Type: Text labels can use Courier, Helvetica, and TimesRoman font types.

∗ Style: Text labels can use plain, italic, bold and bold-italic font styles.

∗ Size: A set of predefined sizes has been chosen for the present implementation. These

sizes range from 8 to 40 points.

Font attributes can be modified by using different selections available under the “Edit |

Set Label | Font” menu option.

• Selecting objects’ colors: jKSImapper allows to color different visual attributes on

selected objects. Colors supported are, in alphabetical order, black, blue, cyan, dark

gray, gray, green, light gray, magenta, orange, pink, red, white and yellow. These colors

can be applied to the following attributes on objects:

∗ Nodes and Context boxes: Color is supported on the body, border and text label of

nodes and context boxes. Color is modified by using the sub-menus available on the

68

“Node | Set Color” and “ContextBox | Set Color” menu options for nodes and context

boxes, respectively.

∗ Links: Colors can be applied to line segments, arrow heads, and text labels. Changes

are done by using options available on the “Link | Set Color” sub-menu. Colors and

font attributes are modified by accessing nested menu options.

• Modification Nodes’ shape: Nodes can be instantiated and modified using any of three

geometrical shapes: rectangle, ellipse, and rounded rectangle. Options to modify the

shape of selected nodes can be found under the “Node | Set Shape” menu option.

• Modifying the number of Line Segments on Links: jKSImapper allows the creation of

three link types, which are differentiated by their number of line segments. To modify

the number of line segments of a link, users need to access options found under the

“Link | Set Arity” menu option.

• Arrow Head settings on Links: jKSImapper provides different arrow head

arrangements. As shown on Figure 16, arrow heads implemented can be found in the

any of the following configurations:

(a) Undirected: No arrow heads are shown. This is the default configuration when a

link is created.

(b) Directed: One line segment will contain an arrow directed towards its edge, while

the remaining line segments will stay arrow-less.

(c) Double directed: All line segments, except one, will show an arrow directed toward

their edge. The remaining line segment will have an arrow head directed toward the

joining point of the link.

(d) Bi-directed: All line segments will have an arrow head pointing toward their edge.

(e) Double bi-directed: Line segments will have two arrow heads each, one pointing to

the joining point of the link, and the second pointing towards the edge of the line

segment.

69

These configurations can be found under the “Link | Set Arrows” menu option.

• Undo/redo operations: All events generated by users are translated into commands that

are stored after being executed by the system. Every operation performed by users

results in the creation of a command that will be executed and stored on a history list (a

description of the command and history list implementation is found on Chapter 5,

under the Section “5.1.4. Command Handling Classes”). Commands maintained in the

history list can be replayed backward (undoing previous operations) or forward (to

recreate previously undone commands). When the user is participating on a multi-user

session, messages requesting undo or redo operations are sent to the server and then

broadcast to the clients. Under this scheme, identical history lists are maintained on the

server and on each of the client members participating on each session. History lists

maintained by server and client processes are emptied when the file in the session is

saved.

The undo and redo options can be found under the “Edit” option on the menu bar.

• Saving a concept map: Concept maps can be saved locally or remotely. To save a file,

Concept Map Window instances provide three options under its “File” menu bar option:

∗ Save: This option saves the concept map on a previously defined file. jKSImapper will

retain information of the place where a concept map was previously saved, whether

locally or remotely. In the case that a concept map has not been saved before, a dialog

asking for a new (local) file name will be displayed.

∗ Save locally as: This option will present a file dialog requesting a file name. This file

name will be used to store the concept map on the local computer.

Figure 16. Arrow head configurations

exemplified on trinary links.

70

∗ Save remotely as: This option will display a dialog inquiring for the location of a

networked computer running an instance of the jKSImapper Server process. Once a

communication channel to the server has been opened, a dialog box requesting a file

name will be displayed to the user. The file name provided is used for storing the

concept map on the selected remote computer.

As explained in previous sections, the origin of a loaded file has repercussions on the

mechanism used to handle operations generated by the user. The same circumstance is

applicable when saving a file: if the file is saved locally, new commands will be handled

locally; if the file is saved remotely, a public session will be created and subsequent

commands will be submitted to the server process.

4.4 JKSIMAPPLET.

As described in previous chapters, Java applets running inside Web browsers confront

more restrictions than Java applications do when it comes to accessing resources on client

computers. For example, it is possible for an application to access the client’s file system,

or to open simultaneous communication channels to different servers on the Internet.

However, such competence is not granted to applets, which are limited by security

mechanisms enforced by Web browser implementations. These security mechanisms

prevent applets (a) to access local storage resources, and (b) to open network connections

to computers other than the server from where the applet was downloaded.

Limiting the functionality of programs is one method to provide a secure environment for

the execution of downloadable code in the Web. Another method might be to support

well-defined security mechanisms to restrict the access to computer resources according

to user-defined access policies. This method has the advantage of just restricting the

functionality of those programs that do not conform to the level of trustworthiness

granted by the user. Unfortunately, the absence of this (or a similar) security method has

lead to the implementation of more restrictive (but simpler) security mechanisms.

71

Under this scenario, implementing jKSImapplet required the modification of some

functions available on jKSImapper. Prominent adjustments were performed on two

specific areas:

• User interface: Java does not provide mechanisms to implement menus in applets. A

viable solution to interact with the user is achieved by embedding widgets in the HTML

document containing the applet. These widgets were programmed to trigger events that

would result on the calling of Java methods inside jKSImapplet. Linking widgets' events

with jKSImapplet methods is achieved using Netscape’s JavaScript language facilities.

A more elegant (and complex) solution is discussed on Chapter 6, under “User Interface

Improvements.”

• File storage: Web browsers totally restrict applets from accessing local disk storage.

This circumstance makes it impossible to save concept maps on the client computer, and

no alternative solution is provided in the present implementation. As a result,

jKSImapplet just supports manipulation of concept maps maintained by sessions held

on server processes; specifically, by a server process running on the server from where

the applet was downloaded.

Figure 17 shows an instance of jKSImapplet embedded on a Web document, along with

the widgets provided to interface with the user. Most operations available as menu

options on jKSImapper were implemented in jKSImapplet by using buttons and combo

boxes. A detailed description of the implementation of these widgets is found in Chapter

5 under “Runtime System Architecture.”

72

4.4.1 JKSIMAPPLET NAVIGATOR.

Systems that allow multi-user manipulation of concept maps across the Internet are

valuable assets for sharing ideas and information. Users might find it useful to have tools

supporting their work without requiring their presence in a meeting room to achieve their

goals. In this case, groups can benefit from using jKSImapper and jKSImapplet as tools

for eliciting concept maps from members spread across different locations.

However, concept maps are not just aimed to communicate and gather ideas; they can

also be used to organize information in different levels of abstraction. Concept maps can

provide an active hypermedia interface by supporting hyperlinks to access resources. In

Figure 17. HTML widgets interacting with jKSImapplet through JavaScript.

73

the case of the Web, concept mapping tools can be used as hypermedia components to

access Internet resources. To this end, jKSImapplet Navigator was developed as an

example of the potential of concept maps to act as hypermedia navigator tools on the

Web.

jKSImapplet Navigator adds URL access capabilities to jKSImapplet. This modification

permits read-only access to concept maps using URLs. It is also possible for the system to

Figure 18. jKSImapplet Navigator.

74

open a multi-user concept mapping session if the downloaded concept map comes from a

server where a jKSImapper server process is under execution.

Figure 18 shows a Netscape Navigator window being displayed as a response to a user

selection on a concept map displayed on a separate window.

4.5 CHAPTER SUMMARY.

This chapter has described an informal concept mapping tool application. This

application, known as jKSImapper, was explicitly developed as the test case for this

research. It was implemented based on the jCMap class library, which was developed

using the Java programming language. jKSImapper has been extended to perform as a

Java applet inside Web browsers. This applet, called jKSImapplet, was further extended

to perform as a navigator tool for the Web, resulting on a new applet named jKSImapplet

Navigator. jKSImapplet Navigator allows access to HTML documents and concept maps

addressed by URLs.

jKSImapper is based on work previously developed at the Knowledge Science Institute,

as it was described on the first section of this chapter. Such systems were invaluable as a

guide for the implementation of the test case systems presented.

The description of previous developments was followed by a discussion of the system

requirements. A general development framework was determined by addressing the

abstract, visualization and disclosure perspectives. Multi-user support was devised by

analyzing the quadrants required for CSCW systems. These requirements were

implemented in jKSImapper.

The last part of this chapter was devoted to introducing the operations performed by

jKSImapper, jKSImapplet, and jKSImapplet Navigator. jKSImapper was described as

composed of two elements: a Windows Manager and Concept Map Windows. The

operations performed by jKSImapper were described in detail on Sections 4.3.1 and 4.3.2.

jKSImapplet was introduced as a generic concept mapping applet derived from

jKSImapper. One of several possible applications for jKSImapplet was depicted by

75

jKSImapplet Navigator, which is an applet capable of accessing Web resources and

hypermedia concept maps inside Netscape Navigator.

The next chapter (Chapter 5) will discuss the implementation of the applications

described in this chapter. This chapter will start with a description of the jCMap Java

class library, which will be followed by a discussion of the implementation of the runtime

system architecture for the systems presented. Chapter 5 will end with an account of the

lessons learned while porting C++ code to Java.

76

CHAPTER 5

SYSTEM ARCHITECTURE

The previous chapter introduced the jKSImapper and jKSImapplet concept mapping

systems created as part of the present work. These developments were described before

by the functionality provided at the user interface level. The present chapter will provide a

different perspective of these systems, detailing the underlying implementation structures.

It has been mentioned earlier that the concept mapping systems implemented were based

on the jCMap object-oriented class library. However, little has been said about the

composition of the library. The first part of this chapter will be devoted to describe the

jCMap class library and its most relevant classes. The second part will depict the use of

the class library for supporting concept mapping client applications, client applets, and

server processes; as well as the relationships existing among objects of the class library

that support concept mapping systems at runtime. The final section of this chapter will be

dedicated to present topics that were addressed when porting the classes from C++ to

Java.

5.1 THE JCMAP CLASS LIBRARY.

jCMap is a class library formed by more than 60 Java object-oriented classes. Figure 19

depicts a concept map with the most important classes from this library.

77

Figure 19. The jCMap class hierarchy

78

This figure contains different visual elements that represent classes, interfaces and

relationships. Rectangular nodes on the figure were used for representing classes; ellipse

nodes, to depict interfaces; shaded nodes, for showing abstraction on classes and

interfaces (which are abstract by default); and non-shaded nodes, to represent

instanceable classes. Links also carry different meanings. Non-labeled links are used to

picture inheritance, and labeled links are used to show association between objects at

runtime.

Classes in the jCMap Class Library are organized under different areas of application

according to the tasks they were designed to perform. These areas are: the Behavioural

Graphic, Visual Graphic, User Interface, Command Handling, Networking and Server,

and File Storage. These areas of application, as well as their classes, are explained on the

following sections.

5.1.1 THE BEHAVIOURAL GRAPHIC CLASSES.

These classes provide the backbone infrastructure to perform concept mapping elicitation.

They implement the behavior needed to support the manipulation of graphics under a

cohesive and consistent environment. The classes composing the Behavioural Graphic

class hierarchy, which are depicted on Figure 20, are described as follows:

• Graphic: This is the base class for all graphics handled on a concept map, whether they

are designed as abstract or visual elements. This class provides methods and attributes

to establish the runtime identity and ownership for each graphic handled during

elicitation. Instances of this class will be owned, at runtime, by objects inheriting the

GraphicContainer interface type.

• GraphicContainer: This interface declares methods that manipulate a group of

graphics, and allow such graphics to query their parents about the concept mapping

elicitation on which they participate.

79

• BehaviouralGraphic: This class is designed to reflect the behavior of an individual

graphical object inside a community of graphics. It also provides the foundations to

support visual representation by maintaining references to visual graphic classes.

BehaviouralGraphic implements most of the abstract methods defined on the Graphic

abstract class and the GraphicContainer interface.

• CommandReceiver: This interface declares methods necessary for the processing of

commands. Subclasses of this interface will provide methods for requesting,

constructing, executing and undoing commands. Such methods will be implemented on

the abstract class SRGraphic and its descendants.

• Observable and Observer: These two interfaces declare methods to create a one-to-

many dependency between graphics. This kind of interaction is also known as

“observer” (Gamma, Helm, Johnson and Vlissides, 1995). Under this scheme, an

observable (Subject) object is the issuer of notifications. It sends out these notifications

to its observers without having to know who these observers are. Any number of

subscribers, which are instances of the Observer class, can be assigned to receive

notifications.

Figure 20. The Behavioural Graphic class hierarchy.

80

• SRGraphic: This class implements the basic functionality to process commands and

mouse-driven user requests. It also provides the grounds to convert graphics data to a

streamable representation used for storage. Also implemented in this class are methods

declared on the Observable and CommandReceiver interfaces.

• SMaplet: This class provides methods and attributes to manipulate links. Such methods

will define algorithms to process link-specific commands and user requests. Instances of

this class are designed to handle visual graphic instances of subclasses derived from the

Connector class. Additionally, this class implements methods defined on the Observer

interface, allowing observation of changes to SRGraphic objects.

• Node: This class extends methods implemented on its parent SRGraphic class, allowing

node manipulations. This class was specifically designed to handle visual graphic

representations derived from the Shape Visual Graphic class.

• ContextBox: This specialized type of node implements methods for handling context

box shapes. Specialized operations, implemented in this class, allow graphics enclosed

in the shape of the context box to move along when the location of the context box is

modified.

• HyperNode: This class extends the behavior of the Node class, allowing the

manipulation of Internet resources. Remote resources can be addressed using URLs or

filenames. In the later case, filenames are used to address concept mapping archives

located on a jKSImapper Server process. Instances of this class are used by jKSImapplet

Navigator systems as active elements for Web navigation. Access to targeted resources

is achieved by single-clicking on HyperNode objects displayed on a concept map.

• jCMap: This class is designed to support the manipulation of graphics as a cohesive

group. Each jCMap object maintains a CommandHandler instance to process

commands, either targeted to itself, or to one of the abstract graphics maintained during

an elicitation. This class can be considered the pivotal component of a concept mapping

system.

81

5.1.2 THE VISUAL GRAPHIC CLASSES.

These classes are used to graphically represent information maintained by Behavioural

Graphic objects. As a result, Visual Graphic objects will just exist in a concept map as

long as they are related to an Behavioural Graphic object. Classes from this area are

designed to maintain information related to the drawing of the graphic of choice. Figure

21 depicts the classes in the Visual Graphic class hierarchy. These classes are briefly

described as follows:

• Graphic: This class is the same class described on the behavioural graphic hierarchy. As

previously stated, this class provides the basic characteristics for visual and abstract

graphic classes.

• VisualGraphic: This abstract class define some variables and methods that will be

common to displayable graphics. Because of the limited information declared on this

class, it can be considered more a referencing class than a common point of

functionality for visual classes.

• Line: This class encompasses enough functionality to display a single line segment

belonging to a Connector object, which is used for grouping line segments conforming a

link. Line objects are aware of their participation as line segments on a Connector (this

relation is not shown in the class hierarchy). This awareness gives them the assurance

that one of their edges will be positioned on the joining point shared by the lines

Figure 21. The Visual Graphic class hierarchy.

82

belonging to the Connector. Instances of the Line class have a limited scope: they do not

make any assumptions about other graphics they may point, and hold just enough

information for drawing arrow heads on their edges.

• Connector: This abstract class defines the mechanisms to manage a group of line

segments. Instances of this class provide the foundations to visually represent SMaplet

objects. Objects of this class maintain information to color line segments and draw

arrow heads (arrow head configurations were described on Chapter 4, under “Arrow

Head Settings for Links”). Operations on this class allow one to find out if an arbitrary

point on the painting area is occupied by any line segment composing a Connector

instance. Such functions allow SMaplet objects to query their visual representation to

determine whether a mouse event has been target to them or to some other displayed

graphic.

• LabeledConnector: This class extends operations found on the Connector class to

include a Shape visual object as part of the connector.

• Shape: This class implements functions that are common to visual objects displaying a

shape. Attributes found on this class store label, boundary and color values. The text

label is drawn having as its center the geometrical center of the shape. Additional

methods on this class indicate whether or not the graphic encloses an arbitrary point in

the painting area. Such operations allow one to determine if Shape instances are targeted

by mouse.

• RectangleShape: This class implements methods to display a rectangular graphic.

• RoundRectangleShape: This class implements methods to display a rounded rectangle

graphic.

• EllipseShape: This class implements methods to display an ellipse graphic.

• NullShape: This class implements methods for handling a graphic that does not draw a

shape. Objects from this class are particularly useful for handling text labels on

LabeledConnector instances.

83

• ContextBoxShape: This class implements the behavior required for displaying context

box shapes. Different from other shape representations, ContextBoxShape instances

display a text label inside their upper frame, and not at the center of the geometrical

shape.

5.1.3 THE USER INTERFACE CLASSES.

This hierarchy of classes provides the functionality needed to integrate concept mapping

classes to windowing environments. These classes, which are shown on Figure 22, allow

concept mapping systems to be implemented as standalone applications, or as applets

inside hypermedia Web browsers. These classes are described as follows:

• jCMap: This class is not part of the User Interface class hierarchy. Nevertheless, it is

shown on this figure due to its parenthood over the jCMapAWT class. For detailed

information concerning the jCMap class, please refer to the Behavioural Graphic class

hierarchy.

• AWTCommand: This interface provides a set of constant values, which are used by

applets and applications to modify a concept map. These values can be linked to menu

options or to Web embeddable widgets. The AWTCommand interface can be considered

just as a repository of constant values since it does not declare any new methods.

Figure 22. The User Interface class hierarchy.

84

• jCMapAWT: This class implements the behavior required to receive and direct user

requests to the appropriate objects for their handling. Methods on this class are designed

to receive user requests as defined on the AWTCommand interface. Such requests will

be translated into operations to create, delete, and modify concept mapping elements.

• jKSImapperAWT: This class is designed to support behavior-specific responses for

concept mapping systems implemented as standalone applications. Instances of this

class maintain a reference to the jKSImapperWindow object on which the concept map

is displayed (this reference is not shown in the class hierarchy). This reference will be

used for enabling and disabling the “Save”, “Undo” and “Redo” menu options,

according to the history list maintained by this instance.

• jKSImappletAWT: This class implements methods to make available Java applet’s

operations to concept map graphics. Applet objects define methods to interact with the

Web. Such operations are used by HyperNode instances to invoke Web resources when

using jKSImapplet Navigator applications.

• jCMapCanvas: This class provides a painting area to draw graphics composing a

concept map.

• jCMapPanel: If one class is to be considered the unifying element between the

graphical user interface and the concept mapping classes, it should be this class.

jCMapPanel implements methods to join and synchronize user interface elements with

concept mapping objects. This class is designed to support vertical and horizontal scroll

bars, a drawing canvas, and an instance of a class derived from jCMapAWT. This

instance can be either an instance of the jKSImapperAWT class (for standalone

applications) or an instance of the jKSImappletAWT class (in the case of applets).

• jKSImapperWindow: This class allows the integration of jCMapPanel instances as part

of a graphical windowing system. Figure 23 depicts the integration of components over

a jKSImapperWindow instance. Methods implemented on this class support a menu

hierarchy that will direct user options to the concept mapping structures maintained by a

85

jCMapPanel instance. The functionality provided by this class was described in Chapter

4, under the section labeled “Concept Map Window".

• jKSImapper: This class implements operations that support the execution of

jKSImapperWindow instances. The functionality supplied by this class is described in

Chapter 4, under the “Windows Manager” section.

• jKSImapplet: This class provides methods that support a concept mapping applet.

Operations implemented on this class are used for receiving AWTCommand instructions

generated by JavaScript widgets embedded on Web documents. Figure 5, which was

introduced in Chapter 3 (pg. 40), depicts an example of a Java method invocation from

a JavaScript function.

Figure 23. Runtime Composition of a jKSImapperWindow object.

86

5.1.4 THE COMMAND HANDLING CLASSES.

These classes allow the definition and manipulation of commands. Commands are

requests encapsulated as objects, and are issued by concept mapping graphics as the result

of user interaction. Advantages of using a Command class are that requests can be queued

in a history list (to support undo operations, for example) and can be used for

broadcasting. Figure 24 shows the Command class hierarchy, which is composed of the

following classes:

• AbstractCommand: This abstract class declares an interface to execute and undo

operations. One of the attributes implemented in this class stores a reference to an object

of the CommandReceiver type (which was described on the “Behavioural Graphic

classes” section). This reference points to the object that will carry out operations in

response to a specific command request.

• Command: This class implements operations to execute and undo a command. Defined

on this class are thirteen constants used for representing command operations. These

commands store information to carry out a request and to undo the effects of a request

once it has been executed. Commands defined in this class, along with their required

state information, are described in Table 6 below these lines.

Figure 24. The Command Handling class hierarchy.

87

Command Description
cmNEW Command to create a new graphic.

• Stores the names of the abstract and visual classes to create. The
number of line segments composing a link is also stored when
creating an abstract class of type SMaplet.

cmDELETE Command to erase graphics.
• Stores a CompositeCommand object containing the graphics deleted.

cmMOVETO Command to change the location of a graphic.
• Stores the graphic’s previous and current positions.

cmONTOP Command to place a graphic at the top of the Z-order.
• Stores the current Z-order position of the graphic.

cmSELECT Command to modify the selection state of a graphic.
• None.

cmATTACHARC Command to attach or detach a line segment to a graphic..
• Stores the Observable object to which the line segment is attached (if

any); the Observable object to which the line segment will be
attached (if any), and the identification number for the line segment
itself.

cmRESIZENODE Command to modify the dimensions of a node.
• Stores the graphic’s original and current dimensions.

cmSETCOLOR Command to change the color of visual attributes on a graphic.
• Store the values of the original and current color, as well as the

attribute that will be affected by the change.
cmSETLABEL Command to modify the label on a graphic.

• Store the original and current text label, and the previous position of
the graphic. In the case of nodes and context boxes, their dimensions
are also stored.

cmSETARROWS Command to assign an arrow head configuration to a link.
• Stores the original and current arrow head configuration.

cmSETARITY Command to modify the number of line segments on a link.
• Stores the new line segment number for the link, the current and

previous Connector instances (which visually represent the link), and
the current and previous tables of Observable objects (used to specify
the objects attached to the line segments).

cmSETSHAPE Command to modify the shape of a node.
• Store the class name for the new shape, and the previous and current

Shape objects.
cmSETFONT Command to modify the font attributes of a text label on a graphic.

• Stores a value representing the font attribute to modify (either type,
style or size), the value to be assigned, and the previous value for the
modified attribute. In the case of nodes and context boxes, the
previous position and dimension will be also stored.

Table 6. Command values defined on the Command class.

88

• CompositeCommand: This class allow the grouping of an open-ended number of

commands. It provides methods to execute a sequence of commands as a single entity.

• CommandHandler: This class provides the methods required to process and store

commands. Features implemented include a multi-leveled undo and redo history list for

commands. This history list will store the commands executed by the concept mapping

system. Additional operations allow traversing backward through the history list (for

undoing commands), as well as traversing forward (for re-executing previously undone

commands).

• FileHandler: This abstract class defines the basic behavior to route commands

generated by users, and implements a framework to manipulate concept mapping data

using a specialized MIME format specification (refer to Section “5.2.3. MIME File

Format” for a detailed description of the format used). This abstract class can be

extended to handle data files located in local and remote computers. Additionally, it

declares methods that can be extended to permit local processing of commands

(enabling single-user sessions), or to route commands to remote servers (allowing multi-

user sessions).

• FileHandlerLocal: This class extends the mechanisms implemented in the FileHandler

class to allow manipulation of concept mapping data files in client computers. This class

supports single-user concept mapping elicitation.

• FileHandlerURL: This FileHandler sub-class implements methods that permit to read

concept mapping data files located on the Web. Files are located using URLs and are

downloaded as read-only resources. This class supports single-user concept mapping

elicitation.

• FileHandlerServer: This class extends the file manipulation process by implementing a

communication channel that transmits and receives commands from a jKSImapper

89

Server process. This class allows clients to access and remotely store multi-user

elicitation sessions maintained by a server.

• SocketConnectionListener: This interface, which is described in the following section,

declares methods used by classes receiving messages from SocketConnection objects.

5.1.5 THE NETWORKING AND SERVER CLASSES.

These classes implement the mechanisms necessary for allowing communication from

client systems to server processes. Additional classes included on this hierarchy will

provide the functionality required for implementing server processes capable of

supporting multiple independent elicitation sessions. Classes encompassed on this

hierarchy, which is shown on Figure 25, are described as follows:

• SocketConnection: This class implements methods for supporting a networking

communication channel using TCP/IP sockets. Messages received from remote sources

are submitted to objects implementing the methods specified by the

SocketConnectionListener interface.

• SocketConnectionListener: This interface declares methods that will be implemented

by classes designed to receive messages from SocketConnection objects. Methods

declared on this interface will be used to notify the reception of a message and to inform

the listener that the communication channel has been closed.

• SocketConnectionDispatcher: This class implements methods declared on the

SocketConnectionListener interface. The main purpose of this class is to cache messages

Figure 25. The Networking and Server class hierarchy.

90

received from a socket, and to process those messages on an orderly manner using an

independent thread of execution. Messages received are placed at the end of a message

queue. This queue is used for prioritizing messages according to their arrival time. At

runtime, the thread of execution will redirect queued messages to an object of the

SocketConnectionListener type for their execution.

• jKSImapperServer: This class is used for implementing server processes. It contains

methods to accept and maintain client connections. Once a client is accepted, a

communication channel is created to receive commands from the client. Clients can

request joining an existing elicitation session, or they may request the creation of a new

elicitation session. Server processes will act as broadcasters of client commands and as

data repositories for concept mapping data. For more information on the runtime

behavior of server processes, please refer to the section named “Server System” later in

this chapter.

• jCMapServerClient: This class implements the operations necessary to maintain a

communication channel between the server process and one of its connected clients.

jCMapServerClient objects will be executed in coordination with server processes.

• jCMapServerFile: Instances of this class are used by the server process to maintain the

current state of a concept mapping elicitation. This class implements methods to

preserve a history list of commands generated by clients participating on a session, and

methods for saving concept maps on the server computer.

5.1.6 THE FILE STORAGE CLASSES.

Classes implemented on this area are used to read and write concept map data to

secondary storage. The format in which this information is stored, is based on the

specifications described on the Multipurpose Internet Mail Extension format (Borenstein

and Freed, 1993). A detailed description of the format implemented can be found in the

section “File Storage” further in this chapter. Classes implemented on this hierarchy,

depicted on Figure 26, are described as follows:

91

• MIMEabstract: This abstract class declares data used to transform concept mapping

data into MIME compliant text files.

• MIMEreader: This class implements the operations needed to reconstruct concept

mapping structures from MIME formatted text lines.

• MIMEwriter: This class provides methods to construct a MIME compliant stream of

data containing concept mapping structures.

5.2 RUNTIME SYSTEM ARCHITECTURE.

In the context of the work developed for this thesis, applets and applications perform as

client systems to interact with server processes. While client systems are designed to

perform as elicitation agents to construct concept maps, server processes are designed to

be central coordinators of elicitation sessions and as data repositories. The following

sections will be devoted to describe the Runtime System Architecture for these

components. For the clients, the jKSImapplet and jKSImapper systems will be depicted;

and for the server, the jKSImapper Server process. Additionally, the File Format used to

store information will be described.

5.2.1 CLIENT SYSTEMS.

Concept mapping client systems developed from the jCMap class library can be executed

as Java applets or as Java standalone applications. As explained below, the differences

between applets and applications are evident on the context of their use:

• Java applets are programs downloaded from remote servers and executed locally by

Web browsers. This process is automatically performed each time an applet is

Figure 26. The File Storage class hierarchy.

92

encountered during Web navigation. The execution of Java applets requires browsers

with a built-in Java Runtime Interpreter.

• Java applications are also programs, but they do not require the presence of a Web

browser for downloading or execution. In that sense, Java applications are like any other

regular standalone program that users may choose to install on their computer. Java

applications require a Java Runtime Interpreter installed on the client computer.

Client systems implemented as part of this thesis are the jKSImapper application, and the

jKSImapplet applet. Figure 27 shows instances of jKSImapper and jKSImapplet while

Figure 27. Groupware Concept Mapping Collaboration using jKSImapper and

jKSImapplet.

93

collaborating on the construction of a conceptual graph describing the sentence “No

student read the book the teacher wrote”. Such construction is maintained in a remote

session supported by a server process.

5.2.1.1 JKSIMAPPER.

jKSImapper is the client concept mapping standalone program implemented using the

jCMap class hierarchy. Instances of this program require two structures to achieve their

design goals: one to support the program’s execution, and another one to support the

concept mapping manipulation itself.

5.2.1.1.1 EXECUTION STRUCTURE.

Execution is initiated by an explicit user invocation of the concept mapping program.

Normally, instances of the application will be invoked by typing an instruction on the

command line, as depicted on Figure 28. In this figure, the program is invoked by typing

the name of the Java runtime interpreter followed by the name of the jKSImapper startup

class, which is jKSImapper.

prompt> java jKSImapper

Figure 28. Sample invocation of jKSImapper on a Command Line.

This command will trigger the execution of the Java interpreter which will automatically

load the classes required for the execution of jKSImapper. Java classes must be stored on

the local computer, and they will be loaded by the interpreter as required by the

application’s execution pace. This means that not all the classes in the application are

loaded at once, but just the classes required to start the application are loaded at this

point. Additional classes, such as the ones involving visual representation of graphics,

will be loaded when needed. The execution structure for jKSImapper instances is

illustrated on Figure 29.

94

5.2.1.1.2 CONCEPT MAPPING STRUCTURE.

This structure deals with the relationships existing among classes at runtime. Figure 30

shows class association upon execution. Nodes on this figure represent instances of

classes, which are named after their text label. Shaded nodes are used to indicate abstract

classes. When an abstract class is shown it is implied that instances from non-abstract

subclasses will be used. Lines are used to represent relationships between instances.

Relationships have special line terminators to indicate common multiplicity values. A

solid ball represents “many,” meaning zero or more. A hollow ball indicates “optional,”

meaning zero or one. A line without terminator symbols indicates one-to-one. Additional

links are used to show connection with resources external to the runtime structure.

Figure 29. jKSImapper Execution Structure diagram.

Figure 30. jKSImapper Concept Mapping Structure diagram.

95

In the case of Figure 30, an instance of jKSImapper is shown to receive events from the

user via menu options. Such instance will also maintain zero or more jKSImapperWindow

objects. Each of these objects will receive menu events from the user, and will hold

exactly one instance of jCMapPanel, which will receive events generated by the user as a

result of scrollbar and mouse manipulation. This instance is shown to be associated with

one instance of jCMapCanvas (which provides the concept mapping painting area), and

one instance of jKSImapperAWT (used for maintaining the elicited concept mapping

data). The jKSImapperAWT object, just mentioned above, will hold zero or more objects

derived from the SRGraphic abstract class (such objects can be nodes, links or context

boxes); and a CommandHandler object for processing and storing instances from

subclasses of the AbstractCommand class (either Command or CompositeCommand class

instances). SRGraphic instances are associated with one or more visual instances of

subclasses derived from the VisualGraphic class. The CommandHandler object depicted

holds one instance of a class derived from FileHandler, which can be FileHandlerLocal,

FileHandlerURL or FileHandlerServer. These classes are designed to load and store

concept mapping data on local secondary storage; to read remote data files addressed by

URLs; and to maintain a remote connection with a server process, respectively. Remote

connections are implemented by using instances of the SocketConnection and

SocketConnectionDispatcher classes. Such objects will send and receive commands when

participating on a multi-user concept mapping elicitation session.

5.2.1.2 JKSIMAPPLET.

jKSImapplet is the client concept mapping applet implemented using the jCMap class

hierarchy. As well as jKSImapper instances, this program will require two runtime

structures, one for supporting the applet’s execution, and another one for supporting the

concept mapping manipulation data.

5.2.1.2.1 EXECUTION STRUCTURE.

96

In the case of jKSImapplet instances, execution is initiated automatically as a result of

Web navigation. The execution of the applet is started after accessing a Web document

containing a reference to the concept mapping applet. Figure 31 shows an example of a

reference to the applet embedded on an HTML document. In this figure, the code

parameter on the <applet> tag is used to invoke the jKSImapplet.class, which is the

jKSImapplet start up class. From the remaining parameters, codebase is used to identify

the URL base location for the class, and width and height to represent the display area

designated to the applet when executed on a browser.

If a reference to jKSImapplet is met while navigating on the Web, the client’s browser

will react by invoking an instance of the Java interpreter to download and execute the

applet’s classes. Java-enabled browsers are deployed with a Java interpreter integrated as

part of the browser.

As in the case of jKSImapper, jKSImapplet classes are requested by the interpreter when

they are needed for execution. In the case of jKSImapplet, this circumstance is more

evident; the required classes will stop the applet’s execution until they have been fetched

from the remote server where the classes reside. The execution structure for jKSImapplet

instances is illustrated on Figure 32.

<applet code = jKSImapplet.class
 codebase= http://www.cpsc.ucalgary.ca/~robertof/jKSImapper/
 width = 500
 height = 300>
</applet>

Figure 31. Sample invocation of jKSImapplet declared inside an HTML document.

Figure 32. jKSImapplet Execution Structure diagram.

97

5.2.1.2.2 CONCEPT MAPPING STRUCTURE.

This structure deals with the relationships existent among the loaded classes conforming

the applet at runtime. Figure 33 shows jKSImapplet object associations upon execution.

In this case, an instance of jKSImapplet is shown as the startup object. This instance is

designed to receive JavaScript events generated by widgets embedded in the HTML

document. jKSImapplet objects are associated with one instance of the jCMapPanel class.

This instance will receive events generated by the user as a result of scrollbar and mouse

manipulation. This object will be associated with one instance of jCMapCanvas (which

provides the concept mapping painting area), and one instance of jKSImappletAWT

(which maintains the elicited concept mapping data). jKSImappletAWT is the applet

counterpart of the jKSImapperAWT class found on jKSImapper. As before, the instance of

jKSImappletAWT will hold zero or more objects derived from the SRGraphic abstract

class (which can be nodes, links or context boxes); and a CommandHandler object to

process instances from subclasses of the AbstractCommand class. As in jKSImapper,

SRGraphic instances on jKSImapplet can be associated with one or more visual instances

of subclasses derived from the VisualGraphic class.

Differently from jKSImapper, jKSImapplet instances are not allowed to save information

on the local computer, due to security constraints implemented by Java interpreters. This

circumstance requires a remote connection with a jKSImapper Server process, which can

Figure 33. jKSImapplet Concept Mapping Structure diagram.

98

act as a data repository. Without such a connection, it would seem unreasonable to start a

concept mapping elicitation if the data could not be stored or shared with other

participants in a multi-user session (unless the concept map created is used for one-time

construction purposes, such as the source to create static images). As a result, the

CommandHandler instance will maintain one instance of the FileHandlerServer class,

which will hold objects derived from the SocketConnection and

SocketConnectionDispatcher classes. Such objects will be used to send and receive

commands when interacting as part of a multi-user concept mapping elicitation session,

and as a communication media to request storage of concept mapping data.

Additional security constraints restrict the behavior of such remote communications as

well. In the case of the jKSImapper program, instances are allowed to establish

communication with server processes running anywhere on the Internet. On the other

hand, jKSImapplet applets are just allowed to communicate with the Web server from

where the applet’s classes were downloaded. This circumstance necessitates a remote

server process on the same server where the classes are published, if concept mapping

applets are to be of any use.

5.2.2 SERVER PROCESS.

The jKSImapper Server is a process executed by server computers. This program has

been designed to receive and maintain network connections with client concept mapping

programs to support multiple multi-user concept mapping elicitation sessions. Server

processes are able to store concept mapping data on secondary storage. These tasks are

achieved by using a collection of classes from the jCMap class hierarchy. These classes,

and their relationship at runtime, are shown on Figure 34.

99

After starting execution, server processes are composed of instances of the

jKSImapperServer and SocketConnectionDispatcher classes. jKSImapperServer objects

implement a thread of execution that constantly listens over a specific socket port. This

socket port is used by clients to request access to a concept mapping elicitation session.

Once a client has requested access, the jKSImapperServer object will create a new

jCMapServerClient instance, and will return to the listen mode for more incoming client

connections. The task of this newly created object is to create and maintain a socket

connection (using a SocketConnection instance) to be used for further communication

with the client program. Individual socket connections will be created for each client

requesting access to the server process. After requesting a connection with the server

process, clients are the sole participants of a new elicitation session. Such session will be

maintained by a new jCMapServerFile instance. After such session is initialized, the

client has the choice to remain on this session (for starting the construction of a concept

map), or to access a previously started elicitation session. In the case of requesting access

to an existing session, a handle to the jCMapServerFile assigned to the requested session

will replace the first jCMapServerFile instance assigned to the client. jCMapServerFile

objects are designed to support individual concept mapping elicitation sessions. In order

to do so, instances of this class will maintain a history list with all the commands

generated by participants of the session. Additionally, they will support data structures to

store the elicited concept map on a server file. Sessions on a server process can be

identified either by the filename assigned for storage or, in the absence of a filename, by

Figure 34. jKSImapper Server Structure diagram.

100

using the name of the client that first created them. It is worth mentioning that duplicates

might exist on the later case.

As depicted on the diagram shown on Figure 34, each one of the connections with clients

will direct their requests to a single SocketConnectionDispatcher object. This object,

which runs on an independent thread of execution, will be responsible for caching and

processing incoming requests on an orderly manner. Methods implemented on this class

will receive client requests and will process them using methods implemented on the

jKSImapperServer class.

Clients connected to a server process have the ability to send and receive commands

generated as part of a concept mapping session. Such commands are stored by the server

process on the session’s history list where the client is currently active. Commands are

then broadcast to all of the participants in the session (including the sender) for execution.

Currently implemented session-oriented commands were listed in Table 6, early on this

Chapter.

In addition to session-oriented commands, clients can submit commands to request

services provided by the server itself. Up to the current implementation, there are four

operations performed by servers. Server-oriented tasks and commands are described as

follows:

• Client requests to join a session: This operation is issued by a client to request access

either to a new, or to an existent concept mapping elicitation session on the server

process. As mentioned on previous paragraphs, clients are automatically attached to a

new session when they are first connected to the server. This session can be used for

starting the elicitation of a new concept map from scratch. However, users might also

prefer to work on a previously created elicitation session, or may want to participate in a

session found on the server. To make such request, a “GET” command is implemented.

This command executes one of five operations according to the parameter following the

command name. These different variations of the “GET” command are issued in a

101

specific order to carry out a task. The sequence in which this request has to be handled

is described as follows:

∗ “GET *[filename]”: This text command is issued by a client requesting a change of

session. The optional “filename” parameter indicates the name of the requested

session. If the parameter is omitted, a new unnamed session is created. When

submitting a filename as a parameter, one of the following two conditions can occur:

◊ The filename exists on the server: First, the server will check if currently active

sessions handle the requested filename. If such a session exists, the client’s current

session is replaced by the other existing one. On the other hand, if a session does not

exist for the requested filename, a new session will be created.

◊ The filename does not exist on the server: In this case, a new session is created and it

is labeled with the submitted filename. This filename will be used to save the

concept map, when requested.

∗ “GET *START”: This command is sent to the client after the reception of a request

for a change of session. Following this command will be the information stored on the

server file requested, if any. This concept mapping information, which is expected to

be MIME formatted, will be used by clients to reconstruct previously stored concept

maps.

∗ “GET *HISTORY”: This command marks the end of the information provided by the

“GET *START” command, and the beginning of a set of commands stored on the

history list for the requested session. It is possible that the history list in a session may

not contain any commands if, for example, the session was recently created and no

commands have been issued by participant elicitators. If commands do exist on the

history list, they will be send to the client system for execution. These commands will

complete the concept map constructed with the concept mapping data first submitted

after the “GET *START” command was sent.

102

∗ “GET *END”: This text command marks the end of the list of commands submitted

by the “GET *HISTORY” command. After receiving this command, the client systems

will have all the information required for constructing a consistent version of the

concept map maintained by the server.

• Client requests to save a concept map: Clients can use this operation for saving concept

mapping information on a server file. This information can be saved under any

filename, and not just to the currently active session. Save operations are invoked using

the text command “SAVE*[filename]”, where “filename” is an optional parameter that

evokes the name of the file where the concept mapping information will be saved. If this

parameter is not provided, the concept map will be saved using the filename assigned to

the session. If no filename has been assigned to the session yet (e.g., the session was

recently created) then the request will be overlooked. Following the initial command,

the server will expect a stream of data containing the concept mapping data, which is

supposed to be MIME formatted. This information will be followed by the closing

command “SAVE*END”, which will mark the end of the data entry, and the saving

request. Additionally, if a session is open for the specified filename, the server will

clean up any commands that might exist on the history list in order to be consistent with

the state of the elicitation.

• Client informs that it is closing its communication with the server: Clients can send

the text command “BYE *” to the server process to inform that the currently active

networking connection is no longer needed and it will be closed. Upon reception of this

message, servers will clean up any objects that might be in use by the retreating client.

However, sessions remain active if other clients are connected to it or if the history list

contains unsaved commands.

• Client requests existing concept mapping files and active sessions: Clients can inquire

about files and sessions currently maintained on the server. Sending an “ALL *” text

command to the server process, will result on the previously mentioned information to

be transmitted back to the client. The information will contain the filenames assigned to

103

sessions or the name of the client that created a session, if a filename has not been given

to it. Clients will use this information to display a selection list, from which the user

might choose one of its elements as a target for an operation to be executed (e.g., joining

a new session).

5.2.3 MIME FILE FORMAT.

As a normal feature found on a variety of applications, users of jKSImapper and

jKSImapplet are able to save their work on secondary storage for later use. As mentioned

on previous sections, jKSImapper applications can store concept mapping data, either

locally or remotely, while jKSImapplet applets are just allowed to store information on

server computers. In the case of jKSImapper and jKSImapplet a new format was

implemented (Kremer and Flores-Méndez, 1996). This format was designed to be

compatible with the format published on the “Multipurpose Internet Mail Extension”

document (Borenstein and Freed, 1993).

Figure 35 and Figure 36 show an example of a concept map and its resulting information

when stored to a file.

104

Figure 35. Conceptual Graph describing the sentence “No student read the book the
teacher wrote”.

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=****KSIDeLiMiTER****

--****KSIDeLiMiTER****
Content-Type: application/x-CMap; version=0.1

22
;
"ContextBox","ContextBoxShape",11,"NOT",30 51 408 61,-7f7f80,-7f7f80,-1,1,1,12
"SMaplet","LabeledConnector",16,"",394 44,2,0,4,1,1,0,-1000000,-1000000,-1000000,1,0,12
"SMaplet","LabeledConnector",12,"",347 25,2,0,4,1,8,1,-1000000,-1000000,-1000000,1,0,12
"SMaplet","LabeledConnector",13,"",277 25,2,0,8,1,5,1,-1000000,-1000000,-1000000,1,0,12
"SMaplet","LabeledConnector",14,"",212 25,2,0,9,1,5,1,-1000000,-1000000,-1000000,1,0,12
"SMaplet","LabeledConnector",15,"",140 25,2,0,6,1,9,1,-1000000,-1000000,-1000000,1,0,12
"SMaplet","LabeledConnector",17,"",279 90,2,0,7,1,2,1,-1000000,-1000000,-1000000,1,0,12
"SMaplet","LabeledConnector",18,"",348 90,2,0,1,1,7,1,-1000000,-1000000,-1000000,1,0,12
"Node","RectangleShape",6,"TEACHER: #",42 15 81 20,-1,-1000000,-1000000,1,0,12
"Node","RectangleShape",5,"WRITE",218 15 54 20,-1,-1000000,-1000000,1,0,12
"Node","RectangleShape",4,"BOOK",367 15 54 20,-1,-1000000,-1000000,1,0,12
"Node","RectangleShape",3,"STUDENT-1",41 80 81 20,-1,-1000000,-1000000,1,0,12
"Node","RectangleShape",2,"READ",218 80 54 20,-1,-1000000,-1000000,1,0,12
"Node","RectangleShape",1,"BOOK-1",367 80 54 20,-1,-1000000,-1000000,1,0,12
"Node","EllipseShape",10,"AGNT",147 81 46 19,-3800,-3800,-1000000,1,0,12
"Node","EllipseShape",8,"OBJ",297 16 45 19,-3800,-3800,-1000000,1,0,12
"Node","EllipseShape",7,"OBJ",297 80 45 20,-3800,-3800,-1000000,1,0,12
"SMaplet","LabeledConnector",20,"",139 90,2,0,3,1,10,1,-1000000,-1000000,-1000000,1,0,12
"SMaplet","LabeledConnector",19,"",210 90,2,0,10,1,2,1,-1000000,-1000000,-1000000,1,0,12
"Node","EllipseShape",9,"AGNT",147 16 46 19,-3800,-3800,-1000000,1,0,12
;

--****KSIDeLiMiTER****--

Figure 36. Data representing the concept map displayed on Figure 35

105

An interesting detail about this example is that the graphics displayed are sorted by their

visual Z-order. This preserves the graphical precedence of overlapping graphics. This is

exemplified on the link bridging from the nodes “BOOK” and “BOOK-1," which requires

a dominant Z-order position over the “NOT” context box, in order to be shown as a

continuos line.

Figure 37 shows the rules applied by jKSImapper and jKSImapplet when storing and

reading concept mapping data. These rules, which were used on the previous example,

are defined using an augmented Backus-Naur Form (BNF) notation (Crocker, 1982).

MIMEfile = MIMEheader *discardLine MIMEmultipartbody *discardLine

MIMEheader = MIMEversion *discardLine MIMEcontenttype

MIMEversion = “MIME Version” “:” Version

MIMEcontenttype = “Content-Type” “:” “multipart/mixed” “;” “boundary” “=” delimiter

MIMEmultipartbody = [delimiterInitial MIMEbodypart] delimiterFinal

MIMEbodypart = “Content-Type” “:” “application/x-CMap” “;” “version” “=” Version

*discardLine CMap

CMap = CMapHeader CMapBody

CMapHeader = NextID CRLF “;” CRLF

CMapBody = *(Link / ContextBox / Node / HyperNode) “;” CRLF

Link = LinkAbstract “,” LinkVisual “,” GraphicID “,” LinkParameters CRLF

ContextBox = ContextBoxAbstract “,” ContextBoxVisual “,” GraphicID “,”

NodeParameters CRLF

Node = NodeAbstract “,” NodeVisual “,” GraphicID “,” NodeParameters CRLF

HyperNode = HyperNodeAbstract “,” NodeVisual “,” GraphicID “,” NodeParameters

“,” quotedString CRLF

LinkParameters = Label “,” Position “,” Arity “,” <Arity>(ArcNumber “,” GraphicID) “,”

ArrowsFlag “,” LabelColor “,” LineColor “,” ArrowColor “,” FontType

“,” FontStyle “,” FontSize ; <Arity> is a reference to the “Arity” value

previously read.

NodeParameters = Label “,” Position “,” Dimension “,” FillColor “,” BorderColor “,”

LabelColor “,” FontType “,” FontStyle “,” FontSize

NextID = integer

LinkAbstract = “SMaplet”

106

LinkVisual = “LabeledConnector”

ContextBoxAbstract = “ContextBox”

ContextBoxVisual = “ContextBoxShape”

NodeAbstract = “Node”

NodeVisual = “RectangleShape” / “RoundRectangleShape” / “EllipseShape”

HyperNodeAbstract = “HyperNode”

GraphicID = integer

Label = quotedString

Position = integer “,” integer

Dimension = integer “,” integer

Arity = integer

ArcNumber = integer

ArrowsFlag = integer

LabelColor = RGB

LineColor = RGB

ArrowColor = RGB

FillColor = RGB

BorderColor = RGB

FontType = integer

FontStyle = integer

FontSize = integer

Version = versionMajor “.” VersionMinor [“.” VersionRelease [[SPACE] “(“

versionPlatform “)”]]

versionMajor = integer

versionMinor = integer

versionRelease = integer

versionPlatform = quotedString

delimiter = “****KSIDeLiMiTER****”

delimiterInitial = “--” delimiter CRLF

delimiterFinal = “--” delimiter “--” CRLF

discardLine = *CHAR CRLF

quotedString = “"” *(ALPHA) “"”

RGB = 6(DIGIT)

Figure 37. Backus-Naur Form notation for the jKSImapper MIME file format.

107

5.3 PORTING C++ CODE TO JAVA: LESSONS LEARNED

The work presented on this thesis was developed using a Java class library modeled on

existing C++ code. Even when these programming languages share many characteristics,

it is common to find features, implemented in Java that are not natural to C++, and

viceversa.

As a result, porting the existing C++ class library to Java required facing issues derived

from differences inherent to these languages. These issues will certainly be confronted by

other porting projects as well. The issues addressed while implementing jKSImapper are

documented in the following sections.

5.3.1 AUTOMATIC MEMORY MANAGEMENT.

C++ identifies objects by using pointers to their memory address. Pointers help to

maintain high computational efficiency, since very efficient code can be produced by

using them, but it is also true that most of the bugs injected into programs are because of

their actual use (MacGuire, 1993). It is possible for C++ programmers to access objects

that have not been initialized yet, or even worst, to access objects for which their memory

space have been released and may already be in use by other objects. This latter type of

error can go unnoticed during program execution and surface in later stages, making the

source of the error very hard to detect and correct.

Java has eliminated this potential source of problems. Instead of using pointers, Java

implements handles, or indirect references to objects located in the heap. Handles are

controlled during program execution by an automatic memory manager, which is

implemented as part of Java interpreters. One of the main tasks of the memory manager is

to remove from memory any object that is no longer referenced by a variable in the

program under execution. This process, which is known as garbage collection, is executed

automatically by the memory manager when the interpreter is idle or when a request to

allocate memory in a highly fragmented heap is not satisfied.

108

The implementation of a memory manager in Java helps to ameliorate, or avoid

altogether, some problems that may arise on long-running C++ applications, such as

(Cox, 1986):

• Memory fragmentation: It is possible for a program to run out of memory, even though

there is plenty free space, because the available memory is heavily fragmented and there

is not enough contiguous memory space for holding new objects requested.

• Memory leaks: It is possible to run out of memory because objects that are not needed

were not properly released (or not released at all), resulting on memory space that will

remain wasted.

Additionally, the combination of handles and a memory manager helps Java interpreters

to detect attempts to access non-initialized objects and avoids the possibility of accessing

an already released object, since objects in memory are only destroyed when no

references to them are found in the program.

To avoid accessing non-initialized objects, Java enforces three states for object variables.

These states are: non-initialized, initialized to null, and initialized to an object handle.

These states are checked for validity at compile and execution time. Figure 38 shows

code examples with variables on each different state, where (a) represents an attempt for

invoking a method of a non-initialized variable (this effort will not compile); (b)

illustrates a method call using a variable that has been initialized to null (this code will

compile, but will throw a NullPointerException when invoking the object’s method); and

(c) shows a method invocation for a previously initialized object (which is the correct

procedure to follow).

109

In the case of the Java class library ported from C++ as part of the work developed for

this thesis, having an automatic memory manager greatly simplified the efforts required to

develop and test the concept mapping system implemented. This circumstance was

enhanced by the existence of a well-defined behavior to detect variable access errors,

which, in the same circumstances, may crash the computer or (worse) go unnoticed under

C++ programs.

5.3.2 PORTABILITY AND GRAPHICAL USER INTERFACES.

Two characteristics that are found on C++ are that it can handle computer internals and

does not define mechanisms to manipulate user interfaces. In latter case, C++ frees

developers to create libraries to handle the user interface of choice, resulting in operating

system (and even vendor) specific libraries for manipulating user interfaces (e.g., in the

case of MS-Windows, Borland has developed the Object Windows Library while

Microsoft has promoted the Microsoft Foundation Classes). Together, these C++

characteristics (access to computer internals and absence of policies to unify graphic user

interfaces) make it difficult to design programs that are portable among computer

platforms.

In contrast to C++, Java implements a set of classes to support graphical user elements

common to diverse operating systems, and restricts programmers from accessing

computer internals. These features, added to the fact that Java explicitly defines the

structure of primitive data types (see Section “3.1.3. Portability”), contribute to the

Figure 38. Java variable states.

110

production of portable programs. Unfortunately, the mechanisms implemented on Java to

manipulate graphic user interfaces are restrictive and immature if compared with current

C++ implementations. In the case of version 1.0.2 of the Java Development Kit, Java

does not implement elements that are common to graphical environments, such as pop-up

menus and modal dialog boxes, for example.

jKSImapper would benefit from the use of pop-up menus to support the modification of

graphical attributes on objects from a concept map; this could be achieved without

requiring the selection of an object and then selecting options from the main menu, as it is

done under the current version. Additional benefits that may result from the use of pop-up

menus include displaying just the operations applicable to the selected object, thus

providing a visual identification of the actions supported by each particular object. The

original C++ library from which jKSImapper was modeled does implement pop-up

menus; however, this facility had to be removed due to the absence of support by the Java

language.

Java does not properly support modal dialogs. Under normal circumstances, the execution

of a modal dialog will result in a dialog being displayed, while blocking user input to

other windows until it is dismissed. After the dialog’s dismissal, the code will continue its

normal thread of execution with the next operation following the instruction that

requested the modal dialog. This circumstance allows one to check information provided

on the dialog and to react to those inputs just after the dialog’s dismissal. Unfortunately,

such behavior is not properly followed in Java. When a modal dialog is invoked, input

interaction is indeed restricted to the dialog, but the thread of execution does not wait for

its dismissal to continue running the program. This circumstance eliminates the

possibility of including code for analyzing the input generated by the user immediately

after closing the dialog. Such a scheme forces the development of modal dialogs having

some “knowledge” of the task to perform after receiving user’s input.

Several techniques can be implemented for handling such input, each with different levels

of complexity. The most common, and easy to implement, technique requires dialogs to

111

maintain a reference to an object responsible to perform the analysis of the input. In other

words, the dialog will know about one or more objects (and one or several methods part

of such objects), which will be responsible for processing input resulting from user

interaction (note that the dialog itself can be the object responsible for handling the input;

however, dialogs that perform tasks in isolation are not common, and usually do not

perform meaningful operations). This approach has the disadvantage of increasing the

complexity of code and increasing the dialogs’ level of coupling with other classes,

hurting reusability.

It would be interesting to observe one exception to the rule for the behavior of modal

dialogs on Java: Instances of the class FileDialog (used for selecting disk files), does act

according to the behavior expected for a modal dialog (this is, stopping code execution on

the instruction invoking the dialog, and resuming execution just after such instruction,

when the dialog is closed). The reason behind this different behavior may be that file

dialogs are directly provided and supported by native windowing environments, and not

by the language itself.

5.3.3 CLASS INHERITANCE AND INTERFACES.

Another relevant difference between C++ and Java is the absence of multiple inheritance

for classes on the latter language. Instead, Java relies on a limited form of multiple

inheritance that is achieved using by interfaces. An interface is an abstract class that just

declares methods and does not implement any code at all. Classes are allowed to be

inherited from zero or more interfaces, but from exactly one class at a time (all Java

classes have the Object class as a superclass).

In the case of the C++ class library ported, the absence of multiple inheritance on Java

represented a problem, since several C++ classes were implemented using multiple parent

classes. Fortunately, multiple inheritance can be simulated by making one class an

attribute or associate of another class. This way, one object can invoke the desired

functions of another class, using delegation rather than inheritance. Delegation consists of

112

catching an operation on one object and sending it to another object that is part of, or

related to, the first object (Rumbaugh, Blaha, Premerlani, Eddy and Lorensen, 1991).

However, implementing delegation increases the amount of code (and possible errors) on

the class that encompasses other classes, since methods have to be implemented to

redirect invocations to the appropriate methods on the associated objects.

5.3.4 GENERIC PROGRAMMING.

Templates are used in C++ to construct structures that can be reused employing different

data types, such as container classes. Templates are particularly helpful to enforce type

correctness at compile time. However, Java does not provide such functionality. Instead,

it relies on object-based containers, which do not have the mechanisms to enforce specific

types on the elements they store, a concept known as type safety. Since containers

implemented in Java manipulate objects of the Object type (all objects have this class as a

supertype), it is possible to insert into containers elements that are not of the type

expected by the application. The compiler and interpreter are not capable of catching such

errors. Under this circumstance, problems are likely to arise when retrieving elements

erroneously inserted, since these objects will not behave as expected. The only error that

might be triggered is if a fetched object is cast to an incompatible type. This action will

generate a ClassCastException exception. Unfortunately, knowing of an error when

retrieving and using a contained element does not help to identify the circumstances on

which the incompatible object was inserted. This scenario is similar to trying to uncover

errors caused by memory access errors using C++ pointers.

Additional disadvantages of using Java containers are (Myers, Bank and Liskov, 1997):

• When new elements are added to a Java container, if they are of a primitive type such as

int, then it is necessary to objectify them. For example, int variables must be explicitly

wrapped in an Integer objects to make them usable as Object instances. This wrapping

step is awkward for the programmer and has runtime overhead.

113

• Whenever an element is fetched from a container, it must be explicitly cast from Object

to the expected type. If the element has a primitive type, it must be also unwrapped after

the cast, adding even more cost and coding complexity. However, casting is not a

substitute

The problems described above are ameliorated in C++ by using templates. When

elements are added to a container, there is no need to objectify them, and when they are

retrieved, there is no need for the expensive runtime cast or unwrapping, and it will

always be the assurance that the elements handled are of the correct type.

5.3.5 PARAMETER-PASSING.

C++ supports two ways of passing parameters to methods and functions: by reference,

and by value. When passing a parameter by value, a copy of the original data is submitted

to the function. This option allows modifications on the copy without altering the value of

the original variable. On the other hand, passing a parameter by reference implies the use

of an alias, which is a reference to the memory address where the original variable is

located. Using this technique, modifications on the variable passed to the function, will

result on modifications of the original value as well.

In the case of Java, parameter-passing is only performed by value. Such implementation

represents a limitation, since there is no straightforward mechanism to return new objects

within a method besides the return value of the method itself. Alternative approaches to

overcome this limitation are, to create wrapper objects for returning new instances, or

using public variables as temporary receptacles for newly created instances.

5.3.6 MULTI-THREADING.

Many environments have what it is called multi-tasking in the operating system, which is

different from multi-threading. Under multi-tasking environments, tasks are known as

heavy-weight processes; under multi-threading environments, tasks are known as light-

weight processes. The difference is that heavy-weight processes are contained in

114

separated address spaces, and should be considered as different programs running

concurrently under the control of the operating system. On the other hand, light-weight

processes, or threads, share the same address space and cooperatively share the same

heavy-weight process.

Programs from different languages can be executed as heavy-weight processes. However,

not all languages (including C++) introduce mechanisms to describe a clean way to deal

with light-weight processes. In contrast, Java was designed as a multi-threaded language

from scratch. It provides mechanisms for controlling the execution of threads and their

synchronization.

In the case of the jCMap class library, threads were implemented to improve the

performance of network socket communications, and to coordinate the execution and

broadcasting of commands in the server process.

5.3.7 WORLD WIDE WEB INTEGRATION.

Java and C++ present different approaches to integrate programs to the Web. In the case

of C++, programs are required to implement functions that communicate and interact

with browsers. Programs implementing such interface are called plug-ins. The primary

goal of the plug-in interface is to allow an existing platform-dependent program to

seamlessly integrate with browsers to take advantage of the networking and hypermedia

capabilities provided by the Web. An example of a plug-in interface is found on the

Netscape’s plug-in Application Program Interface (Netscape, 1996d.) This API declares

functions that C and C++ programs are required to implement and that Netscape will

access at runtime. Reciprocally, Netscape offers functions for the plug-ins to invoke

during execution, thus, allowing an interaction process between the programs and the

browser.

Previous efforts at the Knowledge Science Institute have lead to the implementation of

the NPKSIMapper plug-in, which is the Netscape plug-in version of the C++ KSIMapper

concept mapping tool (Kremer, 1996).

115

Due to their inherent Web nature, Java applets do not follow the rules applied to plug-ins.

Instead, applets can be freely downloaded and executed in any Java-aware client browser,

but security considerations dictate that most user resources should not be available to the

imported applet. Limitations imposed on applets by Web browsers are, for example, to

invalidate any efforts to open network connections to servers other that the host where the

applet was downloaded, and to restrict access to client storage devices.

In contrast to Java applets, plug-ins can provide higher efficiency of code and seamlessly

access to local and remote resources, but they are restricted to a specific operating system

and by the proprietary characteristics of the plug-in API. These circumstances make plug-

in applications virtually non-portable among browsers and operating systems.

5.4 CHAPTER SUMMARY.

The material presented on this chapter provides valuable information to understand the

composition of the class library implemented as part of the present thesis. Additionally,

this chapter presents the runtime structures conformed by classes from the library, and an

analysis on the main topics addressed and learned from translating C++ code to Java.

The jCMap is a class library composed of more than 60 Java object-oriented classes. This

class library was used to develop the jKSImapper standalone application, the jKSImapplet

and jKSImapplet Navigator applets, and the jKSImapper Server process.

These applications allow multi-user concept mapping elicitation on distributed and

multimedia environments supported by the Internet and the Web. In this section, classes

in jCMap were described as components organized under six task-specific groups:

Behavioural Graphic, Visual Graphic, User Interface, Command Handling, Networking

and Server, and File Storage. These groups, as well as their member classes, were covered

on detail during the first part of this chapter.

The principal goal for developing the classes discussed on this chapter is to construct

programs that can satisfy concept mapping needs. To this end, client systems were

complemented with the development of a server process that supports multi-user

116

elicitation. The second part of this chapter was devoted to describing such runtime

structures, which are composed of jKSImapper and jKSImapplet as clients, and the

jKSImapper Server as the centralized server process. Additionally, this section was used

to explain the structure of the file format followed by client systems to transform and

store concept mapping information.

The third part of the present chapter discussed the issues confronted as part of the effort

to port the existing C++ class library to Java. Main differences between these languages

include the presence of an automatic memory manager, support for light-weight threads,

and graphical user interfaces as integral part of the Java language. Additional distinctions

include issues such as parameter-passing to methods and the absence of multiple

inheritance and templates; all of them are supported by C++, but not by Java. Another

relevant difference is found in the mechanisms used by Java and C++ programs to

integrate to Web browsers, one in the form of applets and the other as plug-ins,

respectively.

The following and last chapter of this thesis will discuss issues concerning future research

and improvements for the concept mapping systems implemented as part of this work.

This chapter will also evaluate the objectives for the present research and will draw the

conclusions of this thesis.

117

CHAPTER 6

EVALUATION AND FUTURE DEVELOPMENT

In summarizing the work set forth in this thesis, it is useful to analyze the original stated

aim for the present research. As presented at the beginning of Chapter 1, the goal of this

research was to evaluate Java as a suitable programming language for the Internet by

using it to implement a concept mapping system able to support distributed user

environments on the Internet and the World Wide Web.

To achieve such goal, the Java programming language was thoroughly analyzed and used

to develop a concept mapping system that can work as a standalone application or as an

applet inside Web browsers. These programs, which are named jKSImapper and

jKSImapplet respectively, are designed to perform as elicitation agents that interact with

server processes. These server processes will perform as centralized coordinators and data

repositories. In this context, the Web acts as a hypermedia integrator, and the Internet as

the transport medium.

6.1 EVALUATION.

Seven objectives were defined for this research. These objectives, which were listed in

Section 1.5 in Chapter 1, will be revisited and analyzed in the following sections as a

guide to evaluate the work presented on this thesis.

6.1.1 REQUIREMENTS.

The first objective was:

118

To survey the requirements for developing programs on the Internet and the World Wide

Web, as well as the state of the art of programming languages that can be used to

implement such programs.

This objective was met in Chapter 1 and Chapter 2. Chapter 1 addressed general concepts

related to client/server systems, the Internet and the World Wide Web. This chapter also

introduced the notion of executable code on the Web, and identified portability, security

and functionality as requisites to well-behaved Web programs. These issues (portability,

security and functionality) were addressed in detail on Chapter 2, where they were used to

analyze Java and Microsoft’s ActiveX, which are the foremost techniques to integrate

downloadable code to the Web.

6.1.2 BACKGROUND.

The second objective was:

To analyze the features of Java as a programming language for the Internet and the

World Wide Web.

This objective was answered on Chapter 3, where Java was defined by describing the

main attributes of the language. Such attributes depicted Java as an object-oriented,

distributed, portable, secure and multi-threaded programming language. Additional topics

covered on this chapter were the facilities provided by the language to effortlessly support

Internet communication, and the integration of applets to Java-aware Web browsers, such

as Netscape’s Navigator.

6.1.3 CURRENT WORK IN THE FIELD.

The third objective was:

To analyze the implementation requirements for a concept mapping tool to operate on the

Internet and the World Wide Web based on previous developments at the Knowledge

Science Institute.

119

Chapter 4 addressed this objective by describing the implementation requirements

essential to the development of a concept mapping tool aimed at a multi-user

environment. The first part of this chapter briefly introduced concept mapping tools

previously developed at the Knowledge Science Institute. The experience gained after

developing such tools greatly contributed to the definition of a set of requirements on

which to base the implementation of the present concept mapping programs.

On the other hand, requirements for a multi-user system were defined according to the

Computer Supported Collaborative Work interaction modes for a community of users

working on a common project. Such requirements represented guidelines for the

development of multi-user systems on distributed environments, such as the Internet and

the Web.

6.1.4 IMPLEMENTATION.

The fourth objective was:

To design and develop a well-structured implementation of a Java concept mapping tool

based on an existing system constructed using the C++ programming language.

This objective was met in Chapter 4 and Chapter 5. The former chapter detailed graphical

elements and commands available to the user interacting with jKSImapper and

jKSImapplet. Chapter 5 went deeper on the subject and analyzed each of the classes

constituting the Java jCMap class library. This library, which is a pivotal part of this

research, was derived from a previously developed C++ library, called CMap. The design

goal for jCMap is to support the operation of jKSImapper, jKSImapplet, and the

jKSImapper server process.

6.1.5 DEMONSTRATION.

The fifth and sixth objectives were:

To compare the Java and C++ programming languages at the light of the

implementation experience, and

120

To evaluate the Java concept mapping tool in a range of practical applications.

The fifth objective was covered in Chapter 5, Section 5.3. This chapter addressed specific

issues that were confronted, and will certainly be confronted by other projects, when

porting C++ code to Java. Such issues, which reflect the differences existing between

these programming languages, include topics ranging from multi-threading and

parameterized types, to dynamic memory access models and program integration with the

World-Wide Web.

The sixth objective, to evaluate jKSImapper and jKSImapplet in a range of practical

applications, was met through the many examples displayed on this research, which are

mentioned as follows:

• Figure 8 (pg. 50), from Chapter 4, where jKSImapper was used as a general purpose

concept mapping tool to represent a hierarchical structure of systems.

• Figure 11 (pg. 62) and Figure 17 (pg. 72), from Chapter 4, Figure 35 (pg. 104), from

Chapter 5, and Figure 39 (pg. 122), from the current chapter, where jKSImapper and

jKSImapplet were used to represent Sowa’s conceptual graphs for the sentences “Tom

believes that Marry wants to marry a sailor,” “No Student read the Book the Teacher

Wrote,” and “Dickson went to Calgary by plane,” respectively.

• Figure 18 (pg. 73), from Chapter 4, where an instance of jKSImapplet Navigator is used

as a Web navigational tool. Concept maps handled by this applet were used as graphical

indexes to access Internet resources (in this case, an HTML document containing

another concept map).

• Figure 27 (pg. 92), from Chapter 5, where jKSImapplet and jKSImapper are shown

collaborating on a multi-user setting to elicit a concept map.

6.1.6 FUTURE WORK.

The seventh objective was:

121

To propose further development and research based on the experience and evaluation of

the concept mapping tool implemented.

jKSImapper cannot be considered a final or complete product. Instead, it can be labeled

as the first comprehensive layer of functionality for the development of domain-specific

concept mapping systems. As explained on Section 6.2 below, the functionality provided

by jKSImapper can be enhanced in two non-exclusive ways: by extension, or by

improvement.

6.2 AREAS OF FUTURE DEVELOPMENT.

This section is an account of the future development issues for jKSImapper. As explained

through this work, this implementation provides a well-defined functionality to handle

concept maps. Consequently, future developments are aimed to enhance such

functionality, either by improving the techniques applied to their inner mechanisms, or by

extending them with new domain-specific functionality.

6.2.1 EXTENDING FUNCTIONALITY.

The extension of functionality implies the specialization of existing functionality to

perform under domain-specific constraints. This specialization is achieved by adding

classes and methods to support operations specific to a community of users.

This section will propose viable extensions to the Java systems presented on this thesis. It

is important to bear in mind that, since these systems provide a generic solution for

concept mapping elicitation on the Internet and the Web, the suggestions made on

following sections are exclusive to the perspective of the author, and they do not

represent limitations on the application of the systems to other domains.

As explained below, two different extensions are proposed: one, to support graphical

elicitation of conceptual graphs; and, second, to integrate jKSImapper as a component for

the Habanero Environment, which is a Java groupware system developed by the National

Center of Supercomputing Applications (NCSA).

122

6.2.1.1 CONCEPTUAL GRAPHS.

Conceptual graphs are defined in the literature as finite, connected, bipartite graphs

(Sowa, 1984). They are described as finite, since users’ memory is bound to retain just a

finite number of concepts and conceptual relations. They are depicted as connected,

because two parts that are not connected would represent two independent graphs.

Finally, they are defined as bipartite, since there are two distinctive types of nodes,

concepts and conceptual relations, where every arc links a node of one kind to a node of

the other kind.

Conceptual graphs can be denoted using three different representation types. Such

representations will be described and illustrated using the sentence “Dickson went to

Calgary by plane” (Lukose, 1996):

• Diagrammatic form: In diagrams, concepts are drawn as boxes, conceptual relations as

circles, and arcs as arrowed links connecting boxes and circles. This representation is

illustrated in Figure 39.

Figure 39. Example of a Conceptual Graph as a Diagram.

• Linear form: Linear form is a text-based representation for expressing conceptual

graphs. Boxes drawn for concepts (under the diagrammatic representation) are

abbreviated to square brackets, and circles are represented as rounded parenthesis. As a

123

result, the same conceptual graph depicted in Figure 39 can be depicted as shown on

Figure 40.

 [GO] - -> (AGENT) -> [PERSON: Dickson]
-> (INSTRUMENT) -> [PLANE]
-> (DESTINATION) -> [CITY: Calgary]
<- (PAST)

Figure 40. Example of a Conceptual Graph in Linear Form.

• First-order logic: Conceptual graphs can also be represented using first-order logic.

This representation is exemplified in Figure 41, where the sentence “Dickson went to

Calgary by plane” is used, as in the previous examples.

∃ x ∃ y (

)

GO(x) ^ PERSON(Dickson) ^ PLANE(y) ^ CITY(Calgary) ^
AGENT(x, Dickson) ^ INSTRUMENT(x, y) ^
DESTINATION(x, Calgary) ^ PAST(x)

Figure 41. Example of a Conceptual Graph as a First-order logical formula.

From the representations mentioned above, diagrammatic representations are (arguably)

the easiest to recognize and interpret by humans. As illustrated in Figure 39, jKSImapper

has the ability to graphically depict conceptual graphs as diagrams. However, due to its

non-specialized nature, the system does not provide any assistance (and it does not

enforce any constraints) for the elicitation of formal graphs. As a result, extending the

functionality of jCMap to handle conceptual graphs is an area of future development that

can demonstrate the usefulness of the system when applied to a specific domain.

Another example of the application of jKSImapper and jKSImapplet is found on current

collaboration efforts undertaken between the Knowledge Science Institute and the

Department of Mathematics, Statistics and Computer Science at the University of New

England, Australia. Such efforts may result on the unification of systems into a

distributed environment for the elicitation of centralized knowledge bases. In this context,

jKSImapper and jKSImapplet will act as client elicitation agents to create and edit

knowledge structures maintained by an Extendible Graph Processor system (Garner, Tsui,

Lui, Lukose and Koh, 1992) performing as a server process. Future developments may

124

also extend the functionality of these systems to allow the translation of conceptual

graphs into alternate forms of knowledge representation.

6.2.1.2 THE HABANERO ENVIRONMENT.

The Habanero Environment (NCSA, 1997) is a groupware framework aimed to support

multi-user Java systems that share resources over the Internet.

Habanero is defined a client/server system composed of a server process coordinating

client systems, each supporting a collection of Java applications. Client applications

currently shipped with Habanero include multi-user versions of a whiteboard program, a

text editor, and an audio chat for voice communication. To support such systems,

Habanero implements networking and synchronization mechanisms that allow to share

state, data and events generated by users manipulating client software systems.

To maintain a consistent state among client applications, Habanero implements

mechanisms that allow clients to route user events to a server, which will broadcast such

events to all the participants on a session. Since such runtime structure is similar to the

one implemented on jKSImapper, it is feasible to adapt and extend the present system to

operate as a Habanero client application. This circumstance will help to increase the

awareness of concept maps as collaborative tools, and will allow jKSImapper to be under

the scrutiny of different communities of users, some of which might find it suitable for

extension on their particular domains.

6.2.2 IMPROVING FUNCTIONALITY.

To improve the functionality of a system means to enhance the mechanisms supporting

the operation of such system. In the case of the developments presented on this work,

such enhancements are achieved by adding and refining algorithms and methods to

increase their performance and usability.

The following sections have been included as a critique of the limits, weaknesses and

imperfections detected on the implementations described on this work. Proposed

125

enhancements will be addressed under three different sections: Human-Computer

interfaces, Multi-user issues, and Miscellaneous improvements.

6.2.2.1 HUMAN-COMPUTER INTERFACE.

Human-Computer interfaces are generally described as information channels that allow

users and computers to communicate (Lewis and Rieman, 1994). Usually, these

communication channels on a system are composed of menus, windows, the keyboard

and the mouse.

One method to discover the strengths and weakness of a user interface, is to count the

number of keystrokes and mental operations (decisions) required for the tasks the user

intends to achieve. This will enable estimation of task times and identify tasks that take

too many steps.

Figure 42. Font style modification using menu commands.

In the case of jKSImapper, frequently used operations include creation, edition and

manipulation of graphical objects. From these operations, modifying an object’s location

is the less step-consuming task, since this operation is performed just by clicking on the

target and dragging it to a new location. On the other hand, creation of objects and the

edition of their attributes are the most step-consuming operations, since they rely on

commands nested under several sub-menu levels. Of existing operations, the modification

of an element’s font style represents one of the most inefficient operations found on the

126

system. As illustrated on Figure 42, this task is achieved by selecting the object to modify

(e.g., a node), and by traversing a group of sub-menus until reaching the desired font style

to change. As a result, a total of six decisions are required to successfully complete this

command. Under human-computer ergonomics, such number of decisions reflects a

poorly designed interface.

Figure 43. jKSImapper Toolbar.

At this point, it is true that a better solution for selecting commands needs to be provided.

One feasible answer to this problem is achieved by implementing a toolbar allowing fast

selection of frequently used commands. Such a toolbar may be organized as illustrated on

Figure 43. In this figure, a jKSImapper toolbar is shown as an independent window, but it

can also be implemented as part of the display area of the system.

Functions provided by the toolbar may allow the creation and modification of objects.

This dual functionality will be defined by the existence (or the absence) of selected

elements on an elicitation.

If multiple objects are selected, the toolbar will reflect the common denominator values

for attributes of those objects. In the case of the example shown on Figure 43, a

127

rectangular node labeled “PERSON: Tom” is selected. As a result, the node’s

characteristics are reflected on the toolbar’s controls, which can be used to modify the

attributes of the node. In this case, buttons located at the top of the toolbar can be used to

change the shape of the node to ellipse or rounded rectangle. In the case of this example,

the remaining buttons are shaded since they do not reflect options applicable to the

selected object. Additional controls included on the toolbar are: a color palette that works

in conjunction of a list box to modify color attributes on the targeted object; an input line

for editing the label of the object; and a pair of list boxes that are used to select the

selected element’s font attributes and their values, respectively.

The toolbar can be used to create new elements if no objects are found to be selected. In

this case, new objects will have their attributes initialized to the values provided by the

controls in the toolbar. This technique can speed the creation of multiple objects using

non-default values.

However, the toolbar approach is not suggested as the ultimate solution for human-

computer interaction, and it certainly contains weaknesses. One of such limitations is

found on the creation of new elements while existing objects are selected. This

circumstance represents a problem, since the toolbar presented does not accommodate

(yet) the functionality to switch states from modification of selected items to creation of

new items.

Additional enhancements to the user interface can be achieved by implementing pop-up

menus and in-place edition of labels. These techniques can make explicit the operations

available for an object (in the case of pop-ups) and substantially simplify the modification

of objects’ attributes. The implementation of these approaches is not defined in this

thesis, and they are left for future development.

128

6.2.2.2 MULTI-USER ISSUES.

Groupware awareness is another topic that requires improvement. Groupware awareness

is defined as the dynamic knowledge of changing environments, which are updated and

maintained as the environments evolve (Gutwin, Greenberg and Roseman, 1996).

There are features that can be used to provide awareness on multi-user environments. For

example, there are mechanisms to identify the members collaborating on a multi-user

session. However, techniques vary from displaying a list box listing the names of the

participants, to the implementation of individual cursors for each participant and global

viewers displaying the location of each participant under the entire domain of the session.

The suitability of such techniques depends on the context on which the target application

will be used.

In general, groupware techniques allow participants to be aware of the presence of other

participants (e.g., by using global viewers displaying each member’s cursor); they allow

participants to be aware of the operations performed by each collaborator (e.g., using

authorship and concurrency control); and may allow communication between members of

the session (e.g., by using text areas for message exchange, or using voice transmission

processes). However, as desirable as these functions may be, the implementation of some

of them may require high bandwidth network connections. In the case of jKSImapper and

jKSImapplet, such networking power may not be available, since these applications were

designed to work on the Internet, which is a networking environment that does not make

any assumptions with regard to speed and reliability.

The identification of participants and concurrency control are issues that need to be

implemented on jKSImapper. Identification of users can be achieved by maintaining a list

of members joining the server. This information can be made available to all the clients

for display (e.g., using a list form). On the other hand, concurrency control can be

achieved by using centralized locks for displayed objects. Such locks can be maintained

by the server, and will be represented on client systems by using visual feedback (e.g.,

using colors or patterns to indicate granted locks).

129

6.2.2.3 MISCELLANEOUS IMPROVEMENTS.

Miscellaneous improvements encompass enhancements that do not fit under previous

sections. Up to the moment of writing, two topics have been identified as candidates to

such improvements. These topics are:

• Paint by clipping: Every program that interacts with a user has to implement

mechanisms to display the state of the information handled by the system. Under normal

circumstances, such state will evolve as a result of the operations performed by the user.

Therefore, systems will also need to implement methods to update the information that

is displayed to reflect those changes. In short, two mechanisms have to be implemented

on interactive systems: one, to display the current state of the information; and another

one, to update the information that is displayed to reflect changes resulting from user

interaction.

In the case of jKSImapper and jKSImapplet, the model described above was supported.

Thus, methods were implemented to allow the painting of the graphs maintained by the

system, and to allow the updating of such graphs in response to user events.

However, from these methods, the updating mechanism is not implemented efficiently in

the systems presented, since they just trigger the painting of all the displayed objects

after the execution of each command generated. This deficiency is evident as the

complexity of a concept mapping elicitation grows. For example, in a concept map

composed of one hundred objects, the movement of one of those elements will require

the painting of the remaining ninety-nine objects, regardless of whether such movement

affects or not their visual representation.

A solution to this problem can be found by implementing a technique called paint

clipping. This technique is based on the delimitation of display areas affected by

executed commands, and restricting the updating only to those objects displayed within

such affected areas. In practice, the algorithms implementing this technique will impose

greater processing loads to small concept maps, if compared with the current

130

implemented algorithm; however, this technique will increase the painting speed as the

number of elements on the elicitation increase.

• Copy and paste: Copy and paste are functions based on a temporary buffer used as a

container of information. Copy reflects the act of storing information on the buffer, and

paste represents the action of retrieving information from the buffer. This buffer can be

used by a single system to duplicate existing information, or by multiple systems to

share compatible information.

In the case of the concept mapping systems described on this thesis, the implementation

of a copy and paste mechanism may allow one to copy selected objects to a buffer, from

where they can be retrieved by the same or by a different elicitation session, to duplicate

concept map segments, or to copy concept map segments between sessions,

respectively.

Buffers can be implemented global to the operating system or local to the application.

The first case is supported by most operating systems, which provide a buffer that is

shared by all the applications been executed. On the other hand, local buffers are

implemented for exclusive use of an application. Due to the portability characteristics of

Java, it is not clear at this point whether access to system buffers will be supported or

not. This circumstance will lead to the need of implementing local buffers for the

concept mapping systems described on this work.

6.3 THESIS SUMMARY AND CONCLUSION.

The goal of this research was to evaluate Java as a suitable programming language for the

Internet by using it to implement a concept mapping tool system able to support

distributed user environments on the Internet and the World Wide Web.

To accomplish such task, the presented research introduced, during early stages, the

notion of concept maps, followed by an overview of the Internet and the World Wide

Web. The Web was described as a hypermedia environment capable of presenting

Internet resources under a multimedia interface. From such resources, executable code

131

was identified as the most versatile resource available, due to its ability to provide

complex services as a response to users’ interaction.

At this point, leading techniques that provide downloadable executable code on the Web

were identified and analyzed based on their capabilities to support portability, security

and functionality issues. Techniques evaluated were Java and ActiveX.

This evaluation was followed by a description of the characteristics found in the Java

programming language, including an overview of the networking features that have

positioned Java as a suitable programming language for the Internet and the World Wide

Web. This discussion was followed by a comparison between Java and C++ at the

language level.

The leading step towards production is based on a thorough understanding of the tools to

use. In the case of this research, its first part was devoted to understand the features of the

tool, which is the Java programming language, and the context of its use, which is the

Internet and the World Wide Web. Once these topics were covered, the production of the

system was started. As stated in the aim of this work, a concept mapping tool was to be

implemented to support multi-user concept mapping collaboration on the Internet and the

Web.

The process of producing such tool required the study of previous concept mapping

developments as a guidance to the definition of the requirements for the system. Such

requirements were defined based on levels used for the analysis of concept maps

(abstract, visual and discourse perspectives), and on the functionality that the system has

to provide to support multi-user environments (based on the CSCW interaction modes).

The definition of the requirements for the tool was followed by an overview of the

functionality implemented on the systems developed, which were named jKSImapper and

jKSImapplet. These systems perform as Java concept mapping tools for the Internet and

the Web, respectively.

The last part of this research was devoted to describe in detail the jCMap class hierarchy,

the runtime system architecture for the systems implemented, and the lessons learned

132

while porting C++ code to Java. Class hierarchies are structures composed of defined

entities ordered to reflect the specialization of state and behavior. In the case of the this

research, jCMap was presented as a class hierarchy composed of more than 60 classes

designed to support jKSImapper and jKSImapplet. The operations implemented on these

classes were described according to the areas on which they perform (which are

Behavioural Graphic, Visual Graphic, User Interface, Command Handling, Networking

and Server, and File Storage).

However, class libraries are not a suitable reflection of the relationships existing among

objects at runtime. Thus, a description was required of how the objects collaborate to

provide the functionality expected for the systems implemented. Such relationships

between components in a program define the runtime system architecture for the system.

In the case of this research, three architectures were presented; one for jKSImapper, one

for jKSImapplet, and a third one for the server process.

This discussion was followed by a description of the lessons learned while porting C++

code to Java, and a section describing areas of future development.

Overall, this thesis has presented a usable implementation of a client/server concept

mapping tool developed using the Java programming language. This tool can perform as

a standalone application or as an applet embedded on Netscape browsers. Such

developments, which are named jKSImapper and jKSImapplet, have been demonstrated

to support the elicitation of concept maps on single and multi-user collaborative

environments under the Internet and the World Wide Web.

133

REFERENCES

Adobe Systems, Inc., (Adobe, 1985), “PostScript Language Reference Manual," Adobe
Systems, Inc., Addison-Wesley, 1985.

Axelrod, R. (Axelrod, 1976). “Structure of Decision,” Princeton, New Jersey: Princeton
University Press. 1976.

Ball, S. (Ball, 1996), “SurfIt! - A WWW Browser,” Cooperative Research Center for
Advanced Computational Systems, Australian National University, 1996. Available at:
http://pastime.anu.edu.au/SurfIt/

Berners-Lee, T., Cailliau, R., Frystyk, H., and Secret, A. (Berners-Lee, Cailliau, Frystyk,
Secret, 1994), “The World Wide Web,” Communications of the ACM, August, 1994.

Berners-Lee, T., Masinter, L., and McCahill, L. (Berners-Lee, Masinter and McCahill,
1994), “Uniform Resource Locators (URL),” December 1994. Available at:
http://sunsite.auc.dk/RFC/rfc/rfc1738.html

Berners-Lee, T., and Connolly, D. (Berners-Lee and Connolly, 1995), “Hypertext Markup
Language 2.0,” November 1995. Available at: http://sunsite.auc.dk/RFC/rfc/rfc1866.html

Booch, G., (Booch, 1994). "Object Oriented Analysis and Design with Applications",
Addison-Wesley Publishing Company, Second Edition, 1994.

Borenstein, N. and Freed, N. (Borenstein and Freed, 1993). “MIME (Multipurpose
Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the
Format of Internet Message Bodies,” Request for Comments 1521, September 1993.
Available at: http://sunsite.auc.dk/RFC/rfc/rfc1521.html

Borgida, A., Brachman, R.J., McGuiness, D.L. and Resnick, L.A. (Borgida, Brachman,
McGuiness and Resnick, 1989), “CLASSIC: a structural data model for objects,”
Proceedings of 1989 SIGMOD Conference on the Management of Data. pp.58-67. New
York, ACM Press.

Cox, B., (Cox, 1986), “Object Oriented Programming: An Evolutionary Approach,”
Addison-Wesley, 1986.

Crocker, D.H. (Crocker, 1982). “ARPA Internet Text Messages,” Request for Comments
822, August 1982. Available at: http://sunsite.auc.dk/RFC/rfc/rfc822.html

Dean, D., Felten, E.W., and Wallach, D.S., (Dean, Felten and Wallach, 1996), “Java
Security: From HotJava to Netscape and Beyond," IEEE Symposium on Security and
Privacy, Oakland, California, USA, May 6-8, 1996. Available at:
http://www.cs.princeton.edu/sip/pub/secure96.html

134

Ellis, C.A., Gibbs, S.J., and Reln, G.L., (Ellis, Gibbs and Reln, 1991). "Groupware: Some
Issues and Experiences," Communications of the ACM, 34(1), 1991. pp. 39-58.

Gaines, B.R., (Gaines, 1991). "Modeling and Forecasting the Information Sciences,"
Information Sciences, 3(22), 1991. pp. 57-58. Available at:
http://ksi.cpsc.ucalgary.ca/articles/BRETAM/InfSci/

Gaines, B.R. (Gaines, 1993). "Situated Action Solution of a Resource Allocation Problem
as a Classification Task Represented in a Visual Language," International Journal of
Human-Computer Studies, 1993. pp. 243-271.

Gaines, B.R., Kremer, R. and Flores-Méndez, R.A., (Gaines, Kremer and Flores-Méndez,
1996), “Concept Mapping Development at the Knowledge Science Institute,” Poster track
at the 10th Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff,
Alberta, Canada, November 9-14, 1996.

Gaines, B.R. and Shaw, M.L.G. (Gaines and Shaw, 1995a). “Collaboration through
Concept Maps,” Proceedings of CSCL95: Computer Supported Cooperative Learning.
Bloomington, October, 1995. Available at:
http://ksi.cpsc.ucalgary.ca/articles/CSCL95CM/

Gaines, B.R. and Shaw, M.L.G. (Gaines and Shaw, 1995b). "Concept Maps as
Hypermedia Components," International Journal on Human-Computer Studies, 1995. pp.
323-361. Available at: http://ksi.cpsc.ucalgary.ca/articles/ConceptMaps/

Gaines, B.R., Shaw, M.L.G., Chen, L.L.J. (Gaines, Shaw and Chen, 1996), “Modeling the
Human Factors of Scholarly Communities Supported Through the Internet and World
Wide Web,” Journal of the American Society for Information Science, Winter-Spring
1996.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (Gamma, Helm, Johnson and
Vlissides, 1995). “Design Patterns, Elements of Reusable Object-Oriented
Software,”Addison-Wesley, 1995.

Garner, B.J., Tsui, E., Lui, D., Lukose, D., and Koh, J. (Garner, Tsui, Lui, Lukose and
Koh, 1992), “Progress on an Extendible Graph Processor for Knowledge Acquisition,
Planning and Reasoning,” Current Directions in Conceptual Structure Research, Tim
Nagle, Jan Nagle, Laurie Gerholz and Peter Eklund (Eds.). Ellis Horwood, 1992.

Goldberg, A., and Robson, D., (Goldberg and Robson, 1989), “Smalltalk-80: The
Language,” Addison-Wesley, 1989.

Goodman, D. (Goodman, 1993). “The Complete AppleScript Handbook,” New York,
Random House, 1993.

Gosling, J., Rosenthal, D.S.H., and Arden, M., (Gosling, Rosenthal and Arden, 1989),
“The NeWS Book," Springer-Verlag, 1989.

Gutwin, C., Greenberg, S. and Roseman, M. (Gutwin, Greenberg and Roseman, 1996),
“Workspace Awareness in Real-Time Distributed Groupware: Framework, Widgets, and

135

Evaluation,” People and Computers XI, Eds. A. Sasse, R.J. Cunningham, and R. Winder.
Springer-Verlag, in Press. From the proceedings of HCI'96 (London, August 20-23,
1996).

Harrison, C., Chess, D., Kershenbaum (Harrison, Chess and Kershenbaum, 1995), A.,
“Mobile Agents: Are they a good idea?”, IBM Watson Research Center, March, 1995.
Available at: http://www.research.ibm.com/massive/mobag.ps

Kernighan, R., Ritchie, D., (Kernighan and Ritchie, 1978), “The C Programming
Language,” Prentice-Hall, New Jersey, 1978.

Kirtland, M., (Kirtland, 1996), “Safe Web Surfing with the Internet Component
Download Service,” Microsoft Systems Journal, pg. 65-73, July 1996.

Kremer, R., (Kremer, 1993). “A Concept Map Based Approach to the Shared
Workspace,” Master Thesis, The University of Calgary, June, 1993.

Kremer, R., (Kremer, 1996). “Towards a Multi-User, Programmable Web Concept
Mapping “Shell” to Handle Multiple Formalisms,” Proceedings at the 10th Knowledge
Acquisition for Knowledge-Based Systems Workshop, Banff, Alberta, Canada,
November 9-14, 1996. Available at:
http://www.cpsc.ucalgary.ca/~kremer/KAW96paper/kremer.html

Kremer, R. and Flores-Méndez, R. A. (Kremer and Flores-Méndez, 1996). “BNFs for
KSI Map Storage Formats,” Draft, 1996. Available at:
http://ksi.cpsc.ucalgary.ca/local/software/storageBNF.html

Lapsley, A.Z., (Lapsley, 1995). “Development of a Mediator System on the World-Wide
Web to Model the Concurrent Manufacturing Life Cycle,” Master Thesis, The University
of Calgary, July, 1995.

Lewis, C., and Rieman, J., (Lewis and Rieman, 1994), “Task-Centered User Interface
Design: A Practical Introduction,” University of Colorado, 1994. Available at:
ftp://ftp.cs.colorado.edu/pub/cs/distribs/clewis/HCI-Design-Book/

Lukose, D., (Lukose, 1996), “MODEL-ECS: Executable Conceptual Modeling
Language,” Proceedings at the 10th Knowledge Acquisition for Knowledge-Based
Systems Workshop, Banff, Alberta, Canada, November 9-14, 1996.

MacGuire, S. (MacGuire, 1993), “Writing Solid Code," Microsoft Press, 1993.

McNeese, M.D., Zaff, B.S., Peio, K.J., Snyder, D.E., Duncan, J.C. and McFarren, M.R.
(McNeese, Zaff, Peio, Snyder, Duncan and McFarren, 1990). "An Advanced Knowledge
and Design Acquisition Methodology for the Pilot's Associate,” Harry G Armstrong
Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio. 1990.

Microsoft Corp. (Microsoft, 1996a), “Visual Basic Scripting Edition,” Microsoft, Corp.,
1996. Available at: http://www.microsoft.com/vbscript/

Microsoft Corp. (Microsoft, 1996b), “Internet Explorer” Microsoft, Corp., 1996.
Available at: http://www.microsoft.com/

136

Microsoft (Microsoft, 1996c), “Internet Component Download," Draft Paper, ActiveX
SDK, Microsoft, Corp., May 1996. Available at: http://www.microsoft.com/intdev/sdk/

Microsoft (Microsoft, 1996d), “Windows Trust Verification Services," Draft Paper,
Microsoft, Corp., February 1996. Available at:
http://www.microsoft.com/workshop/prog/default.asp

Myers, A.C., Bank, J.A., and Liskov, B. (Myers, Bank and Liskov, 1997). “Parameterized
Types for Java,” Proceedings of ACM Symposium on Principles of Programming
Languages, January 1997, pp. 132-145. Available at:
ftp://ftp.pmg.lcs.mit.edu/pub/thor/popl97/popl97.html

National Center for Supercomputing Applications, HTTPd Development Team (NCSA,
1996), “The Common Gateway Interface,” National Center for Supecomputing
Applications, 1996. Available at: http://hoohoo.ncsa.uiuc.edu/cgi/

National Center for Supercomputing Applications, (NCSA, 1997), “Habanero Project,"
National Center for Supercomputing Applications, 1997. Available at:
http://www.ncsa.uiuc.edu/SDG/Software/Habanero/

Naughton, P., (Naughton, 1996), “The Java Handbook,” Osborne McGraw-Hill, 1996.

NCompass (NCompass, 1996), “ActiveX Plug-in," NCompass Labs, Inc., 1996.
Available at: http://www.ncompasslabs.com/activex/

Netscape Communications Corp. (Netscape, 1996), “JavaScript Authoring Guide,”
Netscape Communications Corp., 1996. Available at:
http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/

Netscape Communications Corp. (Netscape, 1996b), “Netscape Navigator," Netscape
Communications Corp., 1996. Available at: http://home.netscape.com/

Netscape Communications Corp. (Netscape, 1996c), “LiveConnect Communication,"
Netscape Communications Corp., 1996. Available at:
http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/

Netscape Communications Corp. (Netscape, 1996d), “The Plug-in Developer's Guide,”
Netscape Communications Corp., 1996. Available at:
http://home.netscape.com/eng/mozilla/3.0/handbook/plugins/pguide.htm

Norrie, D.H. and Gaines, B.R. (Norrie and Gaines, 1995). “The Learning Web: A System
View and an Agent-Oriented Model,” International Journal of Educational
Telecommunications 1(1) 23-41, 1995. Available at:
http://ksi.cpsc.ucalgary.ca/articles/LearnWeb/EM95J/

Novak, J.D. and Gowin, D.B. (Novak and Gowin, 1984). “Learning How To Learn,” New
York: Cambridge University Press. 1984.

ObjectSpace, Inc., (ObjectSpace, 1996), “The Java Generic Library," ObjectSpace, Inc.,
1996. Available at: http://www.objectspace.com/jgl/

137

Ousterhout, J. (Ousterhout, 1994), “Tcl and Tk Toolkit," Addison-Wesley, 1994.

Quillian, M.R. (Quillian, 1968). “Semantic memory,” Semantic Information Processing,
M. Minsky, Editor. MIT Press: Cambridge, Massachusetts. p. 216-270, 1968.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W. (Rumbaugh, Blaha,
Premerlani, Eddy and Lorensen, 1991). “Object-Oriented Modeling and Design,” Prentice
Hall, 1991.

Shaw, M.L.G., and Gaines, B.R. (Shaw and Gaines, 1995). “Comparing Constructions
through the Web,” Proceedings of CSCL95: Computer Supported Cooperative Learning,
Bloomington, October, 1995. Available at:
http://ksi.cpsc.ucalgary.ca/articles/CSCL95WG/

Shaw, M.L.G., and Gaines, B.R. (Shaw and Gaines, 1996). “Experience with the
Learning Web,” Proceedings of ED-MEDIA'96: World Conference on Educational
Multimedia and Hypermedia, 1996. Available at:
http://ksi.cpsc.ucalgary.ca/articles/LearnWeb/EM96Exp/

Shoffner, M., and Hughes, M. (Shoffner and Hughes, 1996), “Java and Web-Executable
Object Security," Dr. Dobb’s Journal, Pg. 38-49, November, 1996.

Smart Ideas Technologies Inc., (Smart Ideas, 1996). “Smart Ideas,” Smart Ideas
Technologies, Inc., 1996. Available at: http://www.smarttech.com/

Sowa, J.F. (Sowa, 1984). “Conceptual Structures: Information Processing in Mind and
Machine,” Addison-Wesley, Reading, Massachusetts, 1984.

Stepanov, A, and Lee, M., (Stepanov and Lee, 1996), "The Standard Template Library,"
Hewlett-Packard Laboratories, February, 1995. Available at:
http://www.cs.rpi.edu/~musser/stl.html

Stroustrup, B., (Stroustrup, 1991), “The C++ Programming Language,” Second Edition,
Addison-Wesley, 1991.

Sun Microsystems, (Sun, 1995a), “The Java Virtual Machine Specification," Release 1.0
Beta, Draft Paper, Sun Microsystems, Inc., 1995. Available at: http://java.sun.com/docs/

Sun Microsystems, (Sun, 1995b), “HotJava: The Security Story," Sun Microsystems, Inc.,
1995. Available at: http://java.sun.com/docs/

Sun Microsystems, Inc. (Sun, 1996a), “The HotJava Browser," 1996. Available at:
http://java.sun.com/HotJava/

Sun Microsystems, (Sun, 1996b), “Frequently Asked Questions - Applet Security," Sun
Microsystems, Inc., 1996. Available at: http://java.sun.com/sfaq/index.html

Sun Microsystems, Inc., (Sun, 1996c), “Java Development Toolkit," Sun Microsystems,
Inc., 1996. Available at: http://java.sun.com/

van Rossum, G. (van Rossum, 1996a), “Python Reference Manual," Corporation for
National Research Initiatives, 1996. Available at: http://www.python.org/

138

van Rossum, G. (van Rossum, 1996b), “Grail – The Browser for the rest of Us,"
Corporation for National Research Initiatives, 1996. Available at:
http://grail.cnri.reston.va.us/grail/

White, J. E. (White, 1995), “Mobile Agents,” October, 1995. Available at:
http://www.genmagic.com/agents/Whitepaper/whitepaper.html

Yellin, F., (Yellin, 1995), “Low Level Security in Java," World Wide Web Journal:
Fourth International World Wide Web Conference Proceedings, pg. 369-379, November
1995. Available at: http://www.w3.org/pub/WWW/Journal/1/f.197/paper/197.html

Zimmermann, P., (Zimmermann, 1995), “The Official PGP User's Guide," MIT Press,
1995.

	Chapter ���Introduction
	Aim.
	Motivation.
	Concept Maps.
	Applications.

	Client-Server Computing.
	The Internet.
	The World Wide Web.
	Executable Code on the World Wide Web.
	Common Gateway Interface.
	Helpers and Plug-ins.
	Downloadable Code.

	The Java Programming Language.

	Research Objectives.
	Thesis Overview.

	Chapter ���Downloadable Code on the World Wide Web
	Issues for Downloadable Code.
	Portability.
	Security.
	Functionality.

	Integration of Downloadable Code to the World Wide Web.
	ActiveX.
	Portability.
	Security.
	Functionality.

	Java.
	Portability.
	Security.
	The Language and Compiler.
	The Class Loader.
	The Bytecode Verifier.
	Security Manager.

	Functionality.

	Chapter Summary.

	Chapter ���The Java Programming Language
	Overview.
	Object-Oriented.
	Distributed.
	Portable.
	Secure.
	Multi-threaded.

	Programming for the Internet and the World Wide Web.
	Integration with Netscape Navigator.
	Internet Networking.

	Language comparison between Java and C++.
	Chapter Summary.

	Chapter ���Implementing a Java Concept Mapping Tool
	Previous Work.
	System Requirements.
	Development Framework.
	Supporting Multi-User Environments.

	jKSImapper.
	The Windows Manager.
	The Concept Map Window.

	jKSImapplet.
	jKSImapplet Navigator.

	Chapter Summary.

	Chapter ���System Architecture
	The jCMap Class Library.
	The Behavioural Graphic Classes.
	The Visual Graphic Classes.
	The User Interface Classes.
	The Command Handling Classes.
	The Networking and Server Classes.
	The File Storage Classes.

	Runtime System Architecture.
	Client Systems.
	jKSImapper.
	Execution Structure.
	Concept Mapping Structure.

	jKSImapplet.
	Execution Structure.
	Concept Mapping Structure.

	Server Process.
	MIME File Format.

	Porting C++ Code to Java: Lessons Learned
	Automatic Memory Management.
	Portability and Graphical User Interfaces.
	Class Inheritance and Interfaces.
	Generic Programming.
	Parameter-Passing.
	Multi-Threading.
	World Wide Web Integration.

	Chapter Summary.

	Chapter ���Evaluation and Future Development
	Evaluation.
	Requirements.
	Background.
	Current Work in the Field.
	Implementation.
	Demonstration.
	Future Work.

	Areas of Future Development.
	Extending Functionality.
	Conceptual Graphs.
	The Habanero Environment.

	Improving Functionality.
	Human-Computer Interface.
	Multi-user Issues.
	Miscellaneous Improvements.

	Thesis Summary and Conclusion.

	References

